OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS

2602/1

Pure Mathematics 2
Wednesday 12 JANUARY 2005 Afternoon 1 hour 20 minutes
Additional materials:
Answer booklet
Graph paper
MEI Examination Formulae and Tables (MF12)

TIME 1 hour 20 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer all questions.
- You are permitted to use only a scientific calculator in this paper.

INFORMATION FOR CANDIDATES

- The allocation of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The total number of marks for this paper is 60 .

1 (a) Fig. 1 shows the graph of $y=\mathrm{f}(x)$ with domain $-1 \leqslant x \leqslant 1$.

Fig. 1
Sketch the graphs of
(i) $y=-\mathrm{f}(x)$,
(ii) $y=2 \mathrm{f}(x-1)$.
(b) Using a suitable substitution, or otherwise, find $\int x\left(x^{2}+1\right)^{10} \mathrm{~d} x$.
(c) Differentiate $\ln \left(1+\frac{1}{x}\right)$, simplifying your answer.
(d) Given that $y=x \mathrm{e}^{2 x}$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.

Hence verify that

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-4 \frac{\mathrm{~d} y}{\mathrm{~d} x}+4 y=0 \tag{5}
\end{equation*}
$$

[Total 16]

2 A factory makes widgets. From January 2006, the production manager plans to phase out the production of old widgets and phase in production of new widgets. He models this process as follows.

For old widgets, the monthly production will form a geometric sequence with common ratio 0.9. The production in month 1 (January 2006) will be 5000.
(i) Find the production figures predicted by the model for months 2,3 and 12 .
(ii) Find the total production of old widgets for the 24 months from the start of January 2006. [3]
(iii) Show that the total production of old widgets from the start of January 2006 will not exceed 50000.

For new widgets, the production in month 1 (January 2006) will be 500 . Production will increase by 10% per month, forming a geometric sequence.
(iv) Write down an expression for the production of new widgets in month n. Hence show that monthly production of new widgets will first exceed that of old widgets in month k, where k is the smallest integer for which

$$
\left(\frac{11}{9}\right)^{k-1}>10
$$

Find this value of k.

3 Fig. 3 shows the graph of $y=\mathrm{f}(x)$, where

$$
\mathrm{f}(x)=a x-x^{\frac{2}{3}}, \quad x \geqslant 0 .
$$

The curve crosses the x-axis at the point $\mathrm{A}\left(\frac{1}{8}, 0\right)$ and has a turning point at B .

Fig. 3
(i) Show that $a=2$.
(ii) Find as an exact fraction the gradient of the curve at A . What happens to the gradient of the curve near the origin?
(iii) Find the exact coordinates of B. State the range of the function $\mathrm{f}(x)$.
(iv) Calculate the area of the region enclosed by the curve and the x-axis.

4 A pan of water is heated. The temperature $T^{\circ} \mathrm{C}$ of the water t minutes after switching on the heat is modelled by the equation

$$
T=105-85 \mathrm{e}^{-t} .
$$

(i) Using this model, calculate the initial temperature of the water, and the initial rate of temperature increase.
(ii) Find the time predicted by the model for the water to reach its boiling point of $100^{\circ} \mathrm{C}$.

Once the water reaches $100^{\circ} \mathrm{C}$, the heat is switched off. The temperature $T^{\circ} \mathrm{C}$ of the water is now modelled by the equation

$$
T=20+a \mathrm{e}^{-k t}
$$

where t now denotes the time in minutes after the heat is switched off.
(iii) Write down the value of a. What does the constant 20 in the equation represent?
(iv) Show that plotting values of $\ln (T-20)$ against t would result in a straight line.

Fig. 4 shows the graph of $\ln (T-20)$ against t.

Fig. 4
(v) Use the graph to estimate the value of k, and the time for the temperature of the water to drop from $100^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.

6
BLANK PAGE

7
BLANK PAGE

BLANK PAGE

 effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

2602/1 January 2005

