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1 The matrix M is given by M = ( −1
2

−1
2

√
3

1
2

√
3 −1

2

).

(i) Give a complete geometrical description of the transformation represented by M. [3]

(ii) Hence write down the smallest positive integer n for which Mn = ( 1 0
0 1

). [1]

2 A plane P has equation (r − a).n = 0. With reference to this plane, give a geometrical interpretation of

(i) the vector a, [1]

(ii) the vector n, [1]

(iii) the set of points whose position vectors r satisfy the equation (r − a) × n = 0. [3]

3 The elements x, a, b, c, r, s belong to a non-commutative group G.

(i) Solve for x the equation axb = c. [2]

(ii) Given that r2s2 = (rs)2, prove that rs = sr. [2]

4 (i) Given that � = eiθ , show that �n − 1�n = 2i sin nθ . [2]

(ii) Express sin5 θ in terms of sines of multiples of θ . [5]

5 (i) Find the values of the constant k for which the matrix

( 7 k 1
k 3 1
1 7 3

)
is singular. [4]

(ii) Solve the simultaneous equations

7x − y + � = 9,

−x + 3y + � = −3,

x + 7y + 3� = −3,

expressing your answers in terms of a parameter. [4]

2636/Jan05



3

6 In this question, � denotes the complex number 1
2
(cos 1

3
π + i sin 1

3
π).

(i) Write down �2 and �3 in polar form. [2]

(ii) The points in an Argand diagram which represent the numbers 1, 1+�, 1+�+ �2 and 1+ �+ �2 + �3

are denoted by A, B, C and D respectively. Sketch a diagram to show these points, and join AB,
BC and CD. [2]

(iii) Sn denotes the sum of the series 1 + � + �2 + . . . + �n−1. Show that

S6n = 1
3
(1 − 1

26n
)(3 + i

√
3). [5]

(iv) You are given that S6n converges to S as n → ∞. Write down the value of S. [1]

7 The point P (2, 4, 1) lies on the line l1 which has direction 2i + j + 2k and the point Q (1, 2, 3) lies on
the line l

2
which has direction −2i + j.

(i) Giving your answer in the form r = a + λb + µc, write down an equation of the plane which
passes through the mid-point of PQ and which is parallel to both l

1
and l

2
. [2]

(ii) Find a vector normal to the plane in part (i) and hence, or otherwise, express the equation of the
plane in the form f x + gy + h� = d. [4]

(iii) Find the unit vector in the direction
−−→
PQ. [2]

(iv) Hence calculate the shortest distance between the lines l1 and l2. Explain briefly why your
calculation gives the shortest distance. [3]

8 The function f is defined by f : x → 1
1 − x

for x ∈ �, x ≠ 0, x ≠ 1.

(i) Show that ff(x) = 1 − 1
x

. [2]

It is given that f is an element of a group F under the operation of composition of functions.

(ii) Show that the order of f is 3. [3]

The group F is a proper subgroup of a group H of order 6. Four of the elements of H are e, f, ff and h,

where e : x → x and h : x → 1
x

.

(iii) List the elements of another proper subgroup of H. [2]

(iv) Express the other two elements of H in terms of x. [4]
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