OXFORD CAMBRIDGE AND RSA EXAMINATIONS
 Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

2635

Pure Mathematics 5
Monday
10 JANUARY 2005
Afternoon
1 hour 20 minutes
Additional materials:
Answer booklet
Graph paper
List of Formulae (MF8)

TIME 1 hour 20 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 60 .
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.
(i) Show that the substitution $x=y+1$ transforms the equation $x^{4}-4 x^{3}+x^{2}+6 x+2=0$ to

$$
\begin{equation*}
y^{4}-5 y^{2}+6=0 \tag{2}
\end{equation*}
$$

(ii) Hence find the exact roots of $x^{4}-4 x^{3}+x^{2}+6 x+2=0$.

2 Use the Newton-Raphson method to find the x-coordinate of the point where the curves $y=\ln x$ and $y=\frac{3}{x}$ meet. Give your answer correct to 2 decimal places.

3 Use the substitution $x=\frac{1}{2} \sinh u$ to find $\int \sqrt{ }\left(1+4 x^{2}\right) \mathrm{d} x$.

The diagram illustrates the working of Euler's method for the solution of a differential equation of the form $\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{f}(x, y)$. The curve represents the solution of the differential equation and $A\left(x_{0}, y_{0}\right)$ is the initial point. The first two steps of Euler's method with step-length h are shown.
(i) State the relation between the line $A C$ and the solution curve.
(ii) Write down an expression for
(a) the y-coordinate of C,
(b) the gradient of the line $C F$.

The differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\sqrt{ }\left(x^{3}+y^{3}\right)
$$

where $y=1$ when $x=1$, is to be solved using Euler's method.
(iii) Use a step-length of 0.1 to obtain an estimate of y when $x=1.2$, giving your answer correct to 3 decimal places. Show your working clearly.

5 It is given that α, β and γ are three numbers such that

$$
\alpha+\beta+\gamma=3, \quad \alpha^{2}+\beta^{2}+\gamma^{2}=19 \quad \text { and } \quad \alpha \beta \gamma=1
$$

Find
(i) $\alpha \beta+\beta \gamma+\gamma \alpha$,
(ii) a cubic equation with roots α, β and γ,
(iii) exact values for α, β and γ.

6 It is given that $I_{n}=\int_{0}^{1} x^{n}(1-x)^{\frac{1}{2}} \mathrm{~d} x$, for $n=0,1,2, \ldots$.
(i) Show that $I_{n}=\frac{2}{3} n \int_{0}^{1} x^{n-1}(1-x)^{\frac{3}{2}} \mathrm{~d} x$.
(ii) By writing $(1-x)^{\frac{3}{2}}$ as $(1-x)(1-x)^{\frac{1}{2}}$, or otherwise, show that $I_{n}=\frac{2 n}{2 n+3} I_{n-1}$.
(iii) Evaluate I_{2}, giving your answer as a fraction.
(i) Sketch the curve $y=\operatorname{sech} x$.
(ii) Using the substitution $\mathrm{e}^{x}=u$, show that the area of the region bounded by the curve $y=\operatorname{sech} x$, the line $x=1$ and the positive x - and y-axes is

$$
\begin{equation*}
2 \tan ^{-1} \mathrm{e}-\frac{1}{2} \pi \tag{6}
\end{equation*}
$$

(iii) The region defined in part (ii) is rotated through 2π radians about the x-axis. Prove that the volume of the solid formed is

$$
\begin{equation*}
\pi\left(\frac{\mathrm{e}^{2}-1}{\mathrm{e}^{2}+1}\right) \tag{3}
\end{equation*}
$$

8 (i) Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+6 \frac{\mathrm{~d} y}{\mathrm{~d} x}+10 y=10 \tag{5}
\end{equation*}
$$

(ii) Find the particular solution representing a curve which has tangent $y=x$ at the point $(0,0)$.

BLANK PAGE

[^0]
[^0]: Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

 OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

