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1 (i) Show that the substitution x = y + 1 transforms the equation x4 − 4x3 + x2 + 6x + 2 = 0 to

y4 − 5y2 + 6 = 0. [2]
(ii) Hence find the exact roots of x4 − 4x3 + x2 + 6x + 2 = 0. [3]

2 Use the Newton-Raphson method to find the x-coordinate of the point where the curves y = ln x and

y = 3
x

meet. Give your answer correct to 2 decimal places. [5]

3 Use the substitution x = 1
2

sinh u to find � √(1 + 4x2) dx. [6]

4

The diagram illustrates the working of Euler’s method for the solution of a differential equation of the

form
dy
dx

= f(x, y). The curve represents the solution of the differential equation and A (x
0
, y

0
) is the

initial point. The first two steps of Euler’s method with step-length h are shown.

(i) State the relation between the line AC and the solution curve. [1]

(ii) Write down an expression for

(a) the y-coordinate of C, [1]

(b) the gradient of the line CF. [1]

The differential equation
dy
dx

= √(x3 + y3),
where y = 1 when x = 1, is to be solved using Euler’s method.

(iii) Use a step-length of 0.1 to obtain an estimate of y when x = 1.2, giving your answer correct to
3 decimal places. Show your working clearly. [3]
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5 It is given that α , β and γ are three numbers such that

α + β + γ = 3, α2 + β2 + γ 2 = 19 and αβγ = 1.

Find

(i) αβ + βγ + γ α, [2]

(ii) a cubic equation with roots α, β and γ , [2]

(iii) exact values for α, β and γ . [4]

6 It is given that In = � 1

0
xn(1 − x)1

2 dx, for n = 0, 1, 2, . . . .

(i) Show that In = 2
3
n� 1

0
xn−1(1 − x)3

2 dx. [3]

(ii) By writing (1 − x)3
2 as (1 − x)(1 − x)1

2 , or otherwise, show that In = 2n
2n + 3

In−1. [3]

(iii) Evaluate I2, giving your answer as a fraction. [3]

7 (i) Sketch the curve y = sech x. [1]

(ii) Using the substitution ex = u, show that the area of the region bounded by the curve y = sech x,
the line x = 1 and the positive x- and y-axes is

2 tan−1 e − 1
2
π. [6]

(iii) The region defined in part (ii) is rotated through 2π radians about the x-axis. Prove that the
volume of the solid formed is

π(e2 − 1

e2 + 1
). [3]

8 (i) Find the general solution of the differential equation

d2y

dx2
+ 6

dy
dx

+ 10y = 10. [5]

(ii) Find the particular solution representing a curve which has tangent y = x at the point (0, 0). [6]
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