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1 Find the general solution of the differential equation

dy
dx

− y = e3x,

giving your answer in the form y = f(x). [4]

2 Find the first three non-zero terms in the Maclaurin series for e−x sin 2x. (You may quote standard
Maclaurin series expansions from the List of Formulae.) [5]

3 Prove by induction that

1 × 4 + 2 × 5 + 3 × 6 + . . . + n(n + 3) = 1
3
n(n + 1)(n + 5)

for all integers n ≥ 1. [5]

4 (i) Given that y = cos−1 2x, for −1
2
≤ x ≤ 1

2
, find

dy
dx

. [2]

(ii) Use the substitution x = 1
2

sin θ to find 	 1√(1 − 4x2) dx. [3]

(iii) Hence show that cos−1 2x + sin−1 2x = a, where a is a constant to be found. [3]

5 The equation of a curve in polar coordinates is

r = sin 2θ + cos 2θ .

(i) Verify that r = 0 when θ = 3
8
π, and sketch the part of the curve for which 0 ≤ θ ≤ 3

8
π. [3]

(ii) Find the exact area of the region enclosed between this part of the curve and the line θ = 0. [5]

6 You are given that f(r) = 4(r + 1)(r + 3) .

(i) Express f(r) in partial fractions. [2]

(ii) Hence find
n

∑
r=1

f(r). (You need not express your answer as a single fraction.) [4]

(iii) Show that the series in part (ii) is convergent, and state its sum to infinity. [2]
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7 (i) The complex number � is such that �2 = 1 + i
√

3. Find the two possible values of � in the form
a + ib, where a and b are exact real numbers. [5]

(ii) With the value of � from part (i) such that the real part of � is positive, show on an Argand diagram
the points A and B representing � and �2 respectively. [2]

(iii) Specify two transformations which together map the line segment OA to the line segment OB,
where O is the origin. [4]

8 The equation of a curve C is y = x2

(x + 2a)(x + a) , where a is a positive constant.

(i) Find the equations of the asymptotes of C. [3]

(ii) Show that y cannot take values such that −8 < y < 0. [5]

(iii) Find the coordinates of the point where C intersects one of the asymptotes. [3]
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