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1 Given that ∣∣x∣∣ < 1
2
, expand (1 + 2x)−2 in ascending powers of x, up to and including the term in x3,

simplifying the coefficients. [4]

2 The parametric equations of a curve are

x = θ cos θ, y = sin θ .

Find the gradient of the curve at the point for which θ = π. [5]

3 (i) Express 3 cos θ + sin θ in the form R cos(θ − α), where 0 < α < 1
2
π, stating the exact values of R

and tan α. [3]

(ii) Hence solve the equation

3 cos θ + sin θ = 2,

for 0 < θ < 2π. [4]

4 (i) Verify that
x3

x2 + 1
= x − x

x2 + 1
. [1]

(ii) Hence find � x3

x2 + 1
dx. [3]

(iii) Use integration by parts to find � x ln(x2 + 1)dx. [3]

5 The line L passes through the points P and Q with position vectors ( 3
1
2
) and ( 0−1

4
) respectively.

(i) Find the equation of L, giving your answer in the form r = a + tb. [2]

(ii) Show that the point S with position vector ( 9
5−2
) lies on L, and find the ratio of the length of PS

to the length of QS. [3]

(iii) Find the acute angle between L and a line with direction vector( 1
4
2
), giving your answer correct

to the nearest degree. [3]

6 (i) Find the general solution of the differential equation

dy
dx

= (y
x
)2

,

giving your answer in the form y = f(x). [5]

(ii) For the particular solution in which y = 1 when x = 2, find the value of y when x = 8. [3]
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7 (i) Show that the substitution y = √
x transforms � 1

x(1 + √
x) dx to � 2

y(1 + y) dy. [3]

(ii) Hence, by using partial fractions, find the exact value of � 9

4

1
x(1 + √

x) dx. [6]

8

A circle has centre (8, 1) and radius 4. The points A and B on the circle are such that the tangents to
the circle at A and B pass through the origin (see diagram).

(i) State the equation of the circle. [2]

(ii) The equation of any line through the origin is y = mx.

(a) Show that the x-coordinates of any points of intersection of this line and the circle are given
by

x2(1 + m2) − 2x(m + 8) + 49 = 0. [2]
(b) Hence or otherwise find the set of values of m for which the line meets the circle. [4]

(iii) Hence or otherwise prove that the exact value of tan AOB is 56
33

. [4]
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