OXFORD CAMBRIDGE AND RSA EXAMINATIONS
 Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

2632
Pure Mathematics 2
Monday
10 JANUARY 2005
Afternoon
1 hour 20 minutes
Additional materials:
Answer booklet
Graph paper
List of Formulae (MF8)

TIME 1 hour 20 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 60 .
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1 Find
(i) $\int \frac{3}{x} \mathrm{~d} x$,
(ii) $\int 4 \mathrm{e}^{\frac{1}{2} x} \mathrm{~d} x$.

2 (i) Find the first three terms in the expansion of $(2+x)^{8}$ in ascending powers of x, simplifying the coefficients.
(ii) Hence, or otherwise, determine the coefficient of y^{4} in the expansion of $\left(2+\frac{1}{2} y^{2}\right)^{8}$.

3 The polynomial $\mathrm{f}(x)$ is defined by

$$
\mathrm{f}(x)=x^{3}+p x+q
$$

where p and q are constants. It is given that $x+1$ and $x-3$ are factors of $\mathrm{f}(x)$.
(i) Find the values of p and q.
(ii) Solve the equation $\mathrm{f}(x)=0$.

4 At time t minutes after a pollution incident, the area of sea covered by oil is $X \mathrm{~m}^{2}$. Two models giving X in terms of t are as follows.

$$
\begin{array}{ll}
\text { Model 1: } & X=3 \mathrm{e}^{0.4 t} \\
\text { Model 2: } & X=\sqrt{ }\left(2 t^{4}+9\right)
\end{array}
$$

Show by differentiation that the two models give approximately the same value for the rate of increase of X when $t=7$.

The diagram shows part of the curve $y=\ln \left(16-12 x^{2}\right)$. The region A is bounded by the curve and the lines $x=0, x=1$ and $y=0$.
(i) Show that the trapezium rule, with two strips each of width $\frac{1}{2}$, gives a value of $\frac{1}{2} \ln 104$ for the area of A.
(ii) Explain how the diagram indicates that $\frac{1}{2} \ln 104$ is an underestimate of the area of A.

6

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

The diagrams show five different graphs, each for values of x such that $-a \leqslant x \leqslant a$ where a is a constant.
(i) State which diagram does not show the graph of a function. Justify your answer.
(ii) State which diagram shows the graph of a function which is not 1-1. Justify your answer.
(iii) It is given that two of the diagrams illustrate functions which are inverses of each other. Identify these two diagrams.
(iv) The graph in Fig. 5 has equation $y=\mathrm{f}(x)$. Sketch the graph of $y=|\mathrm{f}(x)|$.

7 (i) Given that $y=\frac{1}{4}(2+\sqrt[5]{x})$, show that x may be expressed in the form $(a y+b)^{5}$, where the values of the constants a and b are to be stated.
(ii)

The diagram shows a sketch of the curve $y=\frac{1}{4}(2+\sqrt[5]{x})$. The shaded region is bounded by part of the curve and the lines $x=0$ and $y=1$. The shaded region is rotated through four right angles about the \boldsymbol{y}-axis. Find the exact volume of the solid produced.

The diagram shows a sector $O B C$ of a circle, centre O and radius 12 cm . The mid-points of $O B$ and $O C$ are A and D respectively. The length of $A D$ is $6 \mathrm{~cm} . A C$ is an arc of the circle, centre D and radius 6 cm . The shaded region is bounded by the line $A B$ and the arcs $A C$ and $B C$.
(i) Show that the angle $A D C=\frac{2}{3} \pi$ radians.
(ii) Show that the perimeter of the shaded region is $(8 \pi+6) \mathrm{cm}$.
(iii) Find the exact area of the shaded region.

9 A sequence $u_{1}, u_{2}, u_{3}, \ldots$ is defined by

$$
u_{1}=7, \quad u_{n+1}=u_{n}+15 .
$$

The sum of the first n terms of this sequence is denoted by S_{n}. The terms of a second sequence $v_{1}, v_{2}, v_{3}, \ldots$ form a geometric progression with first term 1.2 and common ratio 1.2.
(i) Show that $u_{3}+v_{3}=38.728$.
(ii) Show that $S_{70}=36715$.
(iii) Find the largest value of p such that $v_{p}<S_{70}$.
(iv) Find the largest value of q such that $S_{q}<v_{70}$.

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

