Question Number	Scheme	Marks
1. (a) (b)	Label members $1 \rightarrow 240$ Use random numbers to select first from $1-8$ Select every $8^{\text {th }}$ member (e.g. $6,14,22, \ldots$) e.g.: More convenient, efficient, faster etc. Any 1	B1 B1 B1 (3) B1 (1) (4 marks)
2. (b)	$\begin{array}{rlr} \bar{P} \sim \mathrm{~N}\left(110, \frac{8^{2}}{16}\right) & \text { ie }: \bar{P} \sim \mathrm{~N}\left(110,2^{2}\right) & \text { Normal } \\ \mathrm{P}(110<\bar{P}<113) & =\mathrm{P}\left(0<Z<\frac{113-110}{2}\right) & \\ & =\mathrm{P}(0<Z<1.5) & \text { Standardising } \tag{2}\\ & =0.4332 & \end{array}$	M1 A1 ft A1 (3) (5 marks)
3. (a)	Let T represent total time $\begin{aligned} & \therefore \mathrm{E}(T)=225+165+185=575 \\ & \operatorname{Var}(T)=38^{2}+23^{2}+27^{2}=2702 \\ & \therefore P(533<T<655)=P(-0.81<Z<1.54) \\ & =0.7292 \end{aligned}$ AWRT 0.729 Let D represent the difference in times for tasks B and C (i.e. $B-C$) $\begin{aligned} & \therefore \mathrm{E}(D)=165-185=-20 \\ & \operatorname{Var}(D)=23^{2}+27^{2}=1258 \end{aligned}$ $\begin{aligned} \therefore \mathrm{P}(D>0) & =\mathrm{P}\left(Z>\frac{0-(-20)}{\sqrt{1258}}\right) \\ & =\mathrm{P}(Z>0.56) \\ & =0.2877 \end{aligned}$	B1 B1 M1 A1 ft A1 (5) B1 B1 M1 A1 ft A1 (5) (10 marks)

Question Number	Scheme	Marks
4. $\begin{array}{r}\text { (a) } \\ \\ \\ (b) \\ \\ \text { (c) }\end{array}$	Attendance ranks 2, 1, 8, 5, 3, 6, 7, 4 $\begin{array}{lr} \sum \mathrm{d}^{2}=48 & \text { Attempt to find } \sum \mathrm{d}^{2} \\ \mathrm{r}_{\mathrm{s}}=1-\frac{6 \times 48}{8 \times 63} & \text { Substitution of their } \sum \mathrm{d}^{2} \\ =0.4286 & \text { awrt } 0.429 \\ \mathrm{H}_{\mathrm{o}}: \rho=0 ; \mathrm{H}_{1}: \rho \neq 0 . & \text { both } \\ \text { With } n=8, \text { critical value is } 0.7381 & 0.7381 \end{array}$ Since 0.429 is not in the critical region ($\rho<-0.7381$ or $\rho>0.7381$) then there is no evidence to reject H_{o} and it can be concluded that at the 5% level there is no evidence of correlation between league position and attendance Correct comparison Conclusion Share ranks evenly. Use product moment correlation coefficient on ranks.	B1 M1 A1 M1 A1 ft (5) B1 B1 M1 A1 ft (4) B1 (11 marks)
5. (a) (b) (c)	$\mathrm{P}(X=x)=\frac{1}{6} ; x=1,2, \ldots, 6$ Discrete uniform distribution H_{o} : Discrete uniform distribution is a suitable model H_{1} : Discrete uniform distribution is not a suitable model $\begin{array}{ll} \alpha=0.05 \quad v=5 ; \quad \text { CR: } \chi^{2}>11.070 & \\ \begin{array}{rlr} \sum \frac{(\mathrm{O}-\mathrm{E})^{2}}{\mathrm{E}} & =\frac{1}{50}\left\{9^{2}+1^{2}+2^{2}+8^{2}+13^{2}+13^{2}\right\} & \text { All E's=50 } \\ & =\frac{448}{50}=\underline{9.76} & \sum \frac{(\mathrm{O}-\mathrm{E})^{2}}{\mathrm{E}} \end{array} \end{array}$ Since 9.76 is not in the critical region there is no evidence to reject H_{0} and thus the data is compatible with the assumption.	B1 B1 (2) B1 (1) B1 B1 B1 B1 B1 M1 A1 A1 ft (8) (11 marks)

Question Number	Scheme	Marks
6. (a)	$\mathrm{H}_{\mathrm{o}}: \mu_{\mathrm{L}}=\mu_{\mathrm{H}} ; \mathrm{H}_{1}: \mu_{\mathrm{L}} \neq \mu_{\mathrm{H}}$	B1 B1
	8.13 ${ }^{\text {2 } 6.69^{2}}$ Substitute into s.e.	M1
	s.e. $=\sqrt{\frac{81}{400}}+\frac{6.6}{300} \quad$ Complete correct expression	A1
	$=0.5607$ AWRT 0.561	A1
		B1
	Test statistic: $z=\frac{6.40-7.42}{0.5607}=\underline{-1.819} \quad\left(\bar{x}_{\mathrm{L}}-\bar{x}_{\mathrm{H}}\right) /$ their s.e.	M1
	AWRT ± 1.82	A1
	Since -1.819 is not in the critical region then there is no evidence to reject H_{0} and thus it can be concluded that there is no difference in mean expenditure on tobacco.	A1 ft (9)
(b)	C. L. Theorem enables use of $\overline{\mathrm{L}} \sim$ Normal and $\overline{\mathrm{H}} \sim$ Normal. $\overline{\mathrm{L}}$ or $\overline{\mathrm{H}}$	B1
	Normal	B1 (2)
		(11 marks)

Question Number	Scheme						
7.	Observed Frequencies						
		Pass	Fail	Total			
	Male	23	27	50			
	Female		18	50			
	Total	55	45	100			
	Expected Frequencies						
		Pass	Fail	Total	Use of $\frac{\mathrm{R}_{\mathrm{T}} \times \mathrm{C}_{\mathrm{T}}}{100}$	M1	
	Male	27.5	22.5	50	27.5	A1	
	Female	27.5	22.5	50	22.5	A1	
	Total	55	45	100			
	H_{0} : No association between gender and test result					B1	
	H_{1} : Association between gender and test result					B1	
	$\sum \frac{(\mathrm{O}-\mathrm{E})^{2}}{\mathrm{E}}=\frac{(23-27.5)^{2}}{27.5}+\ldots \frac{(18-22.5)^{2}}{22.5}$			Use of $\sum \underline{(\mathrm{O}-\mathrm{E})^{2}}$		M1 A1	
	$=3.27$					A1	
	$\alpha=0.10 \Rightarrow \chi^{2}>2.705$				$v=1$	B1	
	Since 3.27 is in the critical region there is evidence of association between gender and test result.				2.705		
						A1 ft	(11)
							marks)

Question Number			Marks
8. $\begin{array}{r}(a) \\ \\ \\ (b) \\ \\ \\ \text { (c) }\end{array}$	$\bar{x}=\hat{\mu}=\frac{85.2}{12}=\underline{7.10}$		M1A1
	$s^{2}=\frac{1}{11}\left\{906.18-\frac{(85.2)^{2}}{12}\right\}$	Substitution in correct formula	M1
	11 12)	Complete correct expression	A1 ft
	$=27.3873$	AWRT 27.4	A1 (5)
	Confidence interval is given by	$\bar{x} \pm z_{\frac{\alpha}{2}} \cdot \frac{s}{\sqrt{n}}$	M1
	$7.10 \pm 1.6449 \times \frac{5.1}{\sqrt{12}}$	Correct expression with their values	A1 ft
		1.6449	B1
	ie:- (4.6783, 9.5216)	AWRT (4.68, 9.52)	A1 A1 (5)
	The value 4 is not in the interval;		B1
	Thus the claim is not substantiated.		B1 (2)
			(12 marks)

