GCE Examinations

Pure Mathematics Module P6

Advanced Subsidiary / Advanced Level

Paper G

Time: 1 hour 30 minutes

Instructions and Information

Candidates may use any calculator except those with a facility for symbolic algebra and/or calculus.

Full marks may be obtained for answers to ALL questions.
Mathematical and statistical formulae and tables are available.
This paper has 8 questions.

Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working will gain no credit.

Written by Rosemary Smith \& Shaun Armstrong
© Solomon Press
These sheets may be copied for use solely by the purchaser's institute.
1.

$$
\mathbf{A}=\left(\begin{array}{ccc}
3 & 1 & -4 \\
1 & 2 & -1 \\
2 & k & 0
\end{array}\right)
$$

Find the value of the constant k for which \mathbf{A} is a singular matrix.
2. Solve the equation

$$
z^{3}=-4+4 \sqrt{3} \mathrm{i}
$$

giving your answers in the form $r(\cos \theta+\mathrm{i} \sin \theta)$ where $r>0$ and $0 \leq \theta<2 \pi$.
3. Prove by induction that $n\left(n^{2}+5\right)$ is divisible by 6 for all positive integers n.
4. The point P represents the complex number z in an Argand diagram.

Given that

$$
|z-1+2 \mathrm{i}|=3
$$

(a) sketch the locus of P in an Argand diagram.
T, U and V are transformations from the z-plane to the w-plane where

$$
\begin{array}{ll}
T: & w=4 z, \\
U: & w=z+5-\mathrm{i}, \\
V: & w=z \mathrm{e}^{\mathrm{i} \frac{\pi}{2}} .
\end{array}
$$

(b) Describe exactly the locus of the image of P under each of these transformations.
5. (a) By finding the first four derivatives of $\mathrm{f}(x)=\cos x$, find the Taylor series expansion of $\mathrm{f}(x)$ in ascending powers of $\left(x-\frac{\pi}{6}\right)$ up to and including the term in $\left(x-\frac{\pi}{6}\right)^{3}$.
(b) Use this expansion to find an estimate of $\cos \frac{\pi}{4}$, giving your answer to 4 decimal places.
(3 marks)
(c) Find the percentage error in your answer to part (b), giving your answer to 2 significant figures.
(2 marks)
6. Given that y satisfies the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=x^{2}+x y-y^{2}, \quad y=\frac{1}{2} \text { and } \frac{\mathrm{d} y}{\mathrm{~d} x}=-1 \text { at } x=0,
$$

(a) use the Taylor series method to obtain a series for y in ascending powers of x up to and including the term in x^{3}.
(b) Use your series to estimate the value of y at $x=-0.1$
(c) Use the approximation $\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right)_{0} \approx \frac{y_{1}-2 y_{0}+y_{-1}}{h^{2}}$ with a step length of 0.1 and your answer to part (b) to estimate the value of y when $x=0.1$
7. Referred to a fixed origin, the straight lines l_{1}, l_{2} and l_{3} have equations

$$
\begin{array}{ll}
l_{1}: & \mathbf{r}=2 \mathbf{i}-\mathbf{j}+2 \mathbf{k}+s(2 \mathbf{i}-4 \mathbf{j}+\mathbf{k}), \\
l_{2}: & \mathbf{r}=3 \mathbf{i}+4 \mathbf{k}+t(4 \mathbf{i}-2 \mathbf{j}+5 \mathbf{k}), \\
l_{3}: & \mathbf{r}=\mathbf{i}-2 \mathbf{j}+u(2 \mathbf{j}+\mathbf{k}) .
\end{array}
$$

The acute angle between l_{1} and l_{2} is θ.
(a) Find the exact value of $\sin \theta$.

The plane Π contains the lines l_{1} and l_{2}.
(b) Find an equation of Π, giving your answer in the form $a x+b y+c z+d=0$.
(4 marks)
(c) Show that the line l_{3} lies on the plane Π.
8. (a) \mathbf{A} and \mathbf{B} are non-singular square matrices. Prove that $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$.

The transformations $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ are defined by

$$
S:\binom{x}{y} \rightarrow\binom{y-x}{2 x+y} \quad \text { and } \quad T:\binom{x}{y} \rightarrow\binom{3 x}{x+y}
$$

(b) Show that S represents a linear transformation.
(c) Using your result in (a), or otherwise, find the matrix that represents the transformation $(S T)^{-1}$.

END

