GCE Examinations

Pure Mathematics Module P6

Advanced Subsidiary / Advanced Level

Paper F

Time: 1 hour 30 minutes

Instructions and Information

Candidates may use any calculator except those with a facility for symbolic algebra and/or calculus.

Full marks may be obtained for answers to ALL questions.
Mathematical and statistical formulae and tables are available.
This paper has 7 questions.

Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working will gain no credit.

Written by Rosemary Smith \& Shaun Armstrong
© Solomon Press
These sheets may be copied for use solely by the purchaser's institute.

1. Prove by induction that, for all $n \in \mathbb{Z}^{+}$,

$$
\sum_{r=1}^{n} \ln \frac{r+1}{r}=\ln (n+1) .
$$

2.

$$
\mathbf{M}=\left(\begin{array}{cc}
2 & 3 \\
3 & -6
\end{array}\right)
$$

(a) Find the eigenvalues of \mathbf{M}.
(b) Find eigenvectors corresponding to each eigenvalue found in part (a).
3. A transformation T from the z-plane to the w-plane is defined by

$$
w=\frac{z+2 \mathrm{i}}{z-\mathrm{i}}, \quad z \neq \mathrm{i},
$$

where $z=x+\mathrm{i} y, w=u+\mathrm{i} v$ and x, y, u and v are real.
(a) Show that the circle $|z|=1$ is mapped onto a straight line in the w-plane under T and find an equation of the line.

The circle $|z-(a+\mathrm{i} b)|=r$ in the z-plane is mapped under T onto the circle $|w|=2$ in the w-plane, where a, b and r are real.
(b) Find the values of a, b and r.
4. The points A, B and C with coordinates $\left(x_{-1}, y_{-1}\right),\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ respectively lie on the curve $y=\mathrm{f}(x)$ with $x_{1}-x_{0}=x_{0}-x_{-1}=h$.
(a) Use the first three terms of the Taylor series expansion in ascending powers of $\left(x-x_{0}\right)$ to show that

$$
\begin{equation*}
\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right)_{0} \approx \frac{y_{1}-2 y_{0}+y_{-1}}{h^{2}} . \tag{5marks}
\end{equation*}
$$

The variable y satisfies the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+(x+2) \frac{\mathrm{d} y}{\mathrm{~d} x}-3 y=0 \text { with } y=1 \text { at } x=0 \text { and } y=1.2 \text { at } x=0.1
$$

(b) Use the approximations $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{0} \approx \frac{y_{1}-y_{-1}}{2 h}$ and $\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right)_{0} \approx \frac{y_{1}-2 y_{0}+y_{-1}}{h^{2}}$ with a step length of 0.1 to estimate the value of y at $x=0.2$
(6 marks)
5.

$$
\mathbf{A}=\left(\begin{array}{ccc}
1 & -1 & 3 \\
4 & q & 1 \\
1 & 2 & -1
\end{array}\right), q \neq 4 \frac{1}{4} .
$$

(a) Find \mathbf{A}^{-1} in terms of q.
(b) Hence, or otherwise, solve the simultaneous equations

$$
\begin{aligned}
& x-y+3 z=1, \\
& 4 x+y+z=2, \\
& x+2 y-z=5,
\end{aligned}
$$

showing your working clearly.
6. Given that

$$
y=\sqrt{1-x^{2}} \arccos x
$$

(a) show that

$$
\begin{equation*}
\left(1-x^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+x y-x^{2}+1=0 . \tag{I}
\end{equation*}
$$

(5 marks)
(b) By differentiating equation (I) twice, or otherwise, obtain the Maclaurin expansion of $y=\sqrt{1-x^{2}} \arccos x$ up to and including the term in x^{3}.
(8 marks)
7. The plane Π_{1} has vector equation

$$
\mathbf{r}=3 \mathbf{i}+\mathbf{j}-4 \mathbf{k}+\lambda(\mathbf{j}+2 \mathbf{k})+\mu(\mathbf{i}+\mathbf{j}+\mathbf{k}) .
$$

(a) Find a vector \mathbf{n} which is normal to Π_{1}.
(b) Hence find a vector equation of Π_{1} in the form $\mathbf{r} . \mathbf{n}=\mathrm{p}$.
(c) Find the perpendicular distance between Π_{1} and the point A with position vector $2 \mathbf{i}+\mathbf{j}+4 \mathbf{k}$, giving your answer in the form $a \sqrt{ } 6$, where $a \in \mathbb{Q}$.

The plane Π_{2} has equation $\mathbf{r} .(\mathbf{i}+b \mathbf{j})=-4$. The angle between Π_{1} and Π_{2} is 30°.
(d) Find the possible values of the constant b.

END

