GCE Examinations

Pure Mathematics Module P6

Advanced Subsidiary / Advanced Level

Paper B

Time: 1 hour 30 minutes

Instructions and Information

Candidates may use any calculator except those with a facility for symbolic algebra and/or calculus.

Full marks may be obtained for answers to ALL questions.
Mathematical and statistical formulae and tables are available.
This paper has 8 questions.

Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working will gain no credit.

Written by Rosemary Smith \& Shaun Armstrong
© Solomon Press
These sheets may be copied for use solely by the purchaser's institute.

1. Given that x is so small that terms in x^{3} and higher powers of x may be neglected, find the values of the constants a and b for which

$$
\begin{equation*}
\frac{\ln (1+a x)}{1+b x}=3 x+\frac{3}{2} x^{2} \tag{5marks}
\end{equation*}
$$

2. Given that

$$
|z+1-4 i|=1,
$$

(a) sketch, in an Argand diagram, the locus of z,
(b) find the maximum value of $\arg z$ in degrees to one decimal place.
3. (a) Show that

$$
\cosh \mathrm{i} x=\cos x \quad \text { where } x \in \mathbb{R} .
$$

(b) Hence, or otherwise, solve the equation

$$
\cosh \mathrm{i} x=\mathrm{e}^{\mathrm{i} x}
$$

$$
\text { for } 0 \leq x<2 \pi \text {. }
$$

4. Given that

$$
u_{n+2}=5 u_{n+1}-6 u_{n} \text { for } n \geq 1, \quad u_{1}=2 \text { and } u_{2}=4 \text {, }
$$

prove by induction that $u_{n}=2^{n}$ for all integers $n, n \geq 1$.
5. $\quad \mathbf{M}=\left(\begin{array}{ccc}1 & 2 & -1 \\ 0 & 1 & -4 \\ x & 3 & -1\end{array}\right)$.
(a) Given that $\lambda=-1$ is an eigenvalue of \mathbf{M}, find the value of x.
(b) Show that $\lambda=-1$ is the only real eigenvalue of \mathbf{M}.
(c) Find an eigenvector corresponding to the eigenvalue $\lambda=-1$.
6. A student is looking at different methods of solving the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=x y \text { with } y=1 \text { at } x=0.2
$$

The first method the student tries is to use the approximation $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{0} \approx \frac{y_{1}-y_{0}}{h}$ twice with a step length of 0.1 to obtain an estimate for y at $x=0.4$
(a) Find the value of the student's estimate for y at $x=0.4$

The student then realises that the exact value of y at $x=0.4$ can be found using integration.
(b) Use integration to find the exact value of y at $x=0.4$
(c) Find, correct to 1 decimal place, the percentage error in the estimated value in part (a).
7. (a) Given that $z=\cos \theta+\mathrm{i} \sin \theta$, show that

$$
z^{n}+\frac{1}{z^{n}}=2 \cos n \theta \quad \text { and } \quad z^{n}-\frac{1}{z^{n}}=2 \mathrm{i} \sin n \theta
$$

where n is a positive integer.
(b) Given that

$$
\cos ^{4} \theta+\sin ^{4} \theta=A \cos 4 \theta+B
$$

find the values of the constants A and B.
(c) Hence find the exact value of

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{8}} \cos ^{4} \theta+\sin ^{4} \theta \mathrm{~d} \theta \tag{3marks}
\end{equation*}
$$

8. The points A, B, C and D have coordinates $(3,-1,2),(-2,0,-1),(1,2,6)$ and $(-1,-5,8)$ respectively, relative to the origin O.
(a) Find $\overrightarrow{A B} \times \overrightarrow{A C}$.
(b) Find the volume of the tetrahedron $A B C D$.

The plane Π contains the points A, B and C.
(c) Find a vector equation of Π in the form $\mathbf{r} \cdot \mathbf{n}=p$.

The perpendicular from D to Π meets the plane at the point E.
(d) Find the coordinates of E.

END

