GCE Examinations

Pure Mathematics Module P6

Advanced Subsidiary / Advanced Level

Paper A

Time: 1 hour 30 minutes

Instructions and Information

Candidates may use any calculator except those with a facility for symbolic algebra and/or calculus.

Full marks may be obtained for answers to ALL questions.
Mathematical and statistical formulae and tables are available.
This paper has 8 questions.

Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working will gain no credit.

Written by Rosemary Smith \& Shaun Armstrong
© Solomon Press
These sheets may be copied for use solely by the purchaser's institute.

1. With respect to a fixed origin O, the lines l_{1} and l_{2} are given by the equations

$$
\begin{aligned}
& l_{1}:[\mathbf{r}-(-3 \mathbf{i}+2 \mathbf{j}-\mathbf{k})] \times(\mathbf{i}+\mathbf{k})=0, \\
& l_{2}:[\mathbf{r}-(\mathbf{i}+\mathbf{j}+4 \mathbf{k})] \times(2 \mathbf{i}-\mathbf{j}-2 \mathbf{k})=0 .
\end{aligned}
$$

(a) Find $(\mathbf{i}+\mathbf{k}) \times(2 \mathbf{i}-\mathbf{j}-2 \mathbf{k})$.
(3 marks)
(b) Find the shortest distance between l_{1} and l_{2}.
2. Prove by induction that, for all $n \in \mathbb{Z}^{+}$,

$$
\begin{equation*}
\sum_{r=1}^{n}\left(r^{2}+1\right) r!=n(n+1)! \tag{6marks}
\end{equation*}
$$

3. (a) Solve the equation

$$
z^{3}+27=0
$$

giving your answers in the form $r \mathrm{e}^{\mathrm{i} \theta}$ where $r>0,-\pi<\theta \leq \pi$.
(b) Show the points representing your solutions on an Argand diagram.
4. $\quad \mathbf{A}=\left(\begin{array}{ll}2 & a \\ 2 & b\end{array}\right)$.

The matrix \mathbf{A} has eigenvalues $\lambda_{1}=-2$ and $\lambda_{2}=3$.
(a) Find the value of a and the value of b.

Using your values of a and b,
(b) for each eigenvalue, find a corresponding eigenvector,
(c) find a matrix \mathbf{P} such that $\mathbf{P}^{\mathrm{T}} \mathbf{A P}=\left(\begin{array}{cc}-2 & 0 \\ 0 & 3\end{array}\right)$.
5. $\quad\left(1+x^{2}\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+4 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=0$ and $y=1, \frac{\mathrm{~d} y}{\mathrm{~d} x}=1$ at $x=-1$.

Find a series solution of the differential equation in ascending powers of $(x+1)$ up to and including the term in $(x+1)^{4}$.
(11 marks)
6. The variable y satisfies the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y^{2} \text { with } y=1.2 \text { at } x=0.1 \text { and } y=0.9 \text { at } x=0.2
$$

Use the approximations $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{0} \approx \frac{y_{1}-y_{-1}}{2 h}$ and $\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right)_{0} \approx \frac{y_{1}-2 y_{0}+y_{-1}}{h^{2}}$ with a step length of 0.1 to estimate the values of y at $x=0.3$ and $x=0.4$ giving your answers to 3 significant figures.
(11 marks)
7. $\quad \mathbf{M}=\left(\begin{array}{ccc}2 & 1 & 1 \\ k & 4 & 3 \\ -1 & k & 2\end{array}\right)$.
(a) Find the determinant of \mathbf{M} in terms of k.
(b) Prove that \mathbf{M} is non-singular for all real values of k.
(c) Given that $k=3$, find \mathbf{M}^{-1}, showing each step of your working.

When $k=3$ the image of the vector $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ when transformed by \mathbf{M} is the vector $\left(\begin{array}{l}0 \\ 3 \\ 5\end{array}\right)$.
(d) Find the values of a, b and c.
8. A transformation T from the z-plane to the w-plane is defined by

$$
w=\frac{z+1}{\mathrm{i} z-1}, \quad z \neq-\mathrm{i},
$$

where $z=x+\mathrm{i} y, w=u+\mathrm{i} v$ and x, y, u and v are real.
T transforms the circle $|z|=1$ in the z-plane onto a straight line L in the w-plane.
(a) Find an equation of L giving your answer in terms of u and v.
(b) Show that T transforms the line $\operatorname{Im} z=0$ in the z-plane onto a circle C in the w-plane, giving the centre and radius of this circle.
(c) On a single Argand diagram sketch L and C.

