GCE Examinations

Pure Mathematics Module P5

Advanced Subsidiary / Advanced Level

Paper F

Time: 1 hour 30 minutes

Instructions and Information

Candidates may use any calculator except those with a facility for symbolic algebra and/or calculus.

Full marks may be obtained for answers to ALL questions.
Mathematical and statistical formulae and tables are available.
This paper has 8 questions.

Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working will gain no credit.

Written by Rosemary Smith \& Shaun Armstrong
© Solomon Press
These sheets may be copied for use solely by the purchaser's institute.

1. $\mathrm{f}(x)=\operatorname{artanh}(\sin x)$.

Show that $\mathrm{f}^{\prime}(x)=\sec x$.
(4 marks)
2. Find the length of the arc of the curve with equation $y=\ln (\sec x)$ between $x=0$ and $x=\frac{\pi}{3}$, giving your answer in terms of natural logarithms.
(7 marks)
3. A curve has parametric equations

$$
x=t^{2}, \quad y=t^{3} .
$$

Show that the radius of curvature of the curve at the point $(1,1)$ is $\frac{13 \sqrt{13}}{6}$.
4.

$$
I_{n}=\int_{1}^{\mathrm{e}}(\ln x)^{n} \mathrm{~d} x .
$$

(a) Prove that, for $n \in \mathbb{Z}^{+}$,

$$
I_{n}=\mathrm{e}-n I_{n-1} .
$$

(b) Find I_{3}, leaving your answer in terms of e.
5.

Fig. 1
Figure 1 shows the curve C which has equation $y=\operatorname{arcosh} x$.
The shaded region bounded by C, the x-axis and the line $x=\cosh 2$ is rotated through 2π about the y-axis.

The volume of revolution of the solid generated is $a \pi$.
Find the value of a to one decimal place.
(10 marks)
6. $\mathrm{f}(x) \equiv \frac{3 x-7}{(x+1)\left(x^{2}+4\right)}, x \neq-1$.
(a) Express $\mathrm{f}(x)$ in partial fractions.
(4 marks)
(b) Show that

$$
\int_{0}^{2} \mathrm{f}(x) \mathrm{d} x=\frac{\pi}{8}+\ln \left(\frac{2}{9}\right)
$$

7. The ellipse C has equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where a and b are positive constants and $a>b$.
(a) Find an equation of the normal to C at the point $P(a \cos \theta, b \sin \theta)$.

The normal to C at P meets the x-axis at Q.
R is the foot of the perpendicular from P to the x-axis.
(b) Show that $\frac{O Q}{O R}=e^{2}$, where e is the eccentricity of C.
8. (a) Using the definitions of hyperbolic functions in terms of exponential functions prove that

$$
\operatorname{arsinh} x=\ln \left(x+\sqrt{x^{2}+1}\right) .
$$

(b) On the same axes sketch the graphs of $y=\sinh x$ and $y=\operatorname{arsinh} x$.
(c) Solve the equation

$$
x=\sinh [\ln (3 x-2)], \quad x>\frac{2}{3} .
$$

END

