GCE Examinations

Pure Mathematics Module P5

Advanced Subsidiary / Advanced Level

Paper C

Time: 1 hour 30 minutes

Instructions and Information

Candidates may use any calculator except those with a facility for symbolic algebra and/or calculus.

Full marks may be obtained for answers to ALL questions.
Mathematical and statistical formulae and tables are available.
This paper has 7 questions.

Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working will gain no credit.

Written by Rosemary Smith \& Shaun Armstrong
© Solomon Press
These sheets may be copied for use solely by the purchaser's institute.

1. The curve C has intrinsic equation

$$
s=4 \sec ^{3} \psi, \quad 0 \leq \psi<\frac{\pi}{2} .
$$

Find the radius of curvature of C at the point where $\psi=\frac{\pi}{4}$.
2. Solve the equation

$$
5 \operatorname{coth} x+1=7 \operatorname{cosech} x,
$$

giving your answer in terms of natural logarithms.
(7 marks)
3. (a) Show that $\frac{\mathrm{d}}{\mathrm{dx}}(\arccos x)=-\frac{1}{\sqrt{1-x^{2}}}$.
(3 marks)
(b) The curve with equation

$$
y=\arccos x-\frac{1}{2} \ln \left(1-x^{2}\right), \quad-1<x<1,
$$

has a stationary point in the interval $0<x<1$.
Find the exact coordinates of this stationary point.
(7 marks)
4. (a) Express $3-6 x-9 x^{2}$ in the form $a-(b x+c)^{2}$ where a, b and c are constants.

Hence, or otherwise, find
(b) $\int \frac{1}{\sqrt{3-6 x-9 x^{2}}} \mathrm{~d} x$,
(4 marks)
(c) $\int_{-\frac{1}{3}}^{0} \frac{1}{3-6 x-9 x^{2}} \mathrm{~d} x$,
expressing your answer to part (c) in terms of natural logarithms.
5. $\mathrm{f}(x)=\operatorname{artanh}\left(\frac{x^{2}-1}{x^{2}+1}\right), x>0$.
(a) Using the definitions of $\sinh x$ and $\cosh x$ in terms of exponentials, express $\tanh x$ in terms of e^{x} and e^{-x}.
(b) Hence prove that

$$
\mathrm{f}(x)=\ln x
$$

(c) Hence, or otherwise, show that the area bounded by the curve $y=\operatorname{artanh}\left(\frac{x^{2}-1}{x^{2}+1}\right)$, the positive x-axis and the line $x=2 \mathrm{e}$ is $2 \mathrm{e} \ln 2+1$.
6. The ellipse C has equation $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$.
(a) Find an equation of the normal to C at the point $P(5 \cos \theta, 3 \sin \theta)$.

The normal to C at P meets the coordinate axes at Q and R.
Given that $O R S Q$ is a rectangle, where O is the origin,
(b) show that, as θ varies, the locus of S is an ellipse and find its equation in Cartesian form.
(8 marks)

Turn over
7.

$$
I_{n}(x)=\int_{0}^{x} \cos ^{n} 2 t \mathrm{~d} t, \quad n \geq 0
$$

(a) Show that

$$
\begin{equation*}
n I_{n}(x)=\frac{1}{2} \sin 2 x \cos ^{n-1} 2 x+(n-1) I_{n-2}(x), \quad n \geq 2 . \tag{7marks}
\end{equation*}
$$

(b) Find $I_{0}\left(\frac{\pi}{4}\right)$ in terms of π.

Fig. 1
Figure 1 shows the curve with polar equation

$$
r=a \cos ^{2} 2 \theta, \quad 0 \leq \theta \leq \frac{\pi}{4},
$$

where a is a positive constant.
(c) Using your answers to parts (a) and (b), or otherwise, calculate the area bounded by the curve and the half-lines $\theta=0$ and $\theta=\frac{\pi}{4}$.

END

