GCE Examinations

Pure Mathematics Module P5

Advanced Subsidiary / Advanced Level

Paper B

Time: 1 hour 30 minutes

Instructions and Information

Candidates may use any calculator except those with a facility for symbolic algebra and/or calculus.

Full marks may be obtained for answers to ALL questions.
Mathematical and statistical formulae and tables are available.
This paper has 7 questions.

Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working will gain no credit.

Written by Rosemary Smith \& Shaun Armstrong
© Solomon Press
These sheets may be copied for use solely by the purchaser's institute.

1. Given that

$$
y \arccos x-\frac{x}{\pi} \mathrm{e}^{2 x}-1=0
$$

find the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at the point where $x=0$, giving your answer in terms of π.
2.

$$
\mathrm{f}(x)=5 \cosh x+3 \sinh x
$$

The minimum value of $\mathrm{f}(x)$ occurs at the point $(p \ln q, r)$ where p, q and r are integers.
Find the values of p, q and r.
(8 marks)
3. The line $y=m x+c$ is a tangent to the rectangular hyperbola with equation $x y=-9$.
(a) Show that $c= \pm 6 \sqrt{m}$.
(b) Hence, or otherwise, find the equations of the tangents from the point $(4,-2)$ to the rectangular hyperbola $x y=-9$.
(5 marks)
4. The curve C is defined by

$$
y^{2}=x, \quad x \geq 0, y \geq 0 .
$$

The region between C, the x-axis and the line $x=1$ is rotated through 2π about the x-axis.
Show that the area of the surface generated is

$$
\begin{equation*}
\frac{\pi}{6}(5 \sqrt{5}-1) . \tag{11marks}
\end{equation*}
$$

5. (a) Using the definition of $\cosh x$ in terms of exponential functions, express $\operatorname{sech} x$ in terms of e^{x} and e^{-x}.
(b) Sketch the graph of $y=\operatorname{sech} x$.
(c) Show that $\int \operatorname{sech} x \mathrm{~d} x=2 \arctan \mathrm{e}^{x}+c$.

The curve C has equation $y=\operatorname{sech} x$. The region between C, the x-axis and the lines $x=-a$ and $x=a$, where a is a positive constant, is rotated through 2π about the x-axis.
(d) Find the volume of revolution of the solid generated.
(e) Find the limit of the volume of revolution as $a \rightarrow \infty$.
6.

$$
I_{n}=\int_{0}^{\sqrt{2}}\left(2-x^{2}\right)^{n} \mathrm{~d} x, \quad n \geq 0
$$

(a) Show that

$$
\begin{equation*}
I_{n}=\frac{4 n}{2 n+1} I_{n-1}, \quad n \geq 1 . \tag{9marks}
\end{equation*}
$$

(b) Hence evaluate I_{3}, leaving your answer in surd form.
7. The curve C has intrinsic equation

$$
s=\ln \left(\tan \frac{1}{2} \psi\right), \quad 0<\psi \leq \frac{\pi}{2} .
$$

(a) Show that radius of curvature of C is given by $\rho=\operatorname{cosec} \psi$.

Given that $y=\psi=\frac{\pi}{2}$ when $x=0$,
(b) show that $y=\psi$,
(c) use integration to show that a Cartesian equation of C is $x=\ln (\sin y)$.

END

