GCE Examinations

Pure Mathematics Module P5

Advanced Subsidiary / Advanced Level

Paper G

Time: 1 hour 30 minutes

Instructions and Information

Candidates may use any calculator except those with a facility for symbolic algebra and/or calculus.

Full marks may be obtained for answers to ALL questions.
Mathematical and statistical formulae and tables are available.
This paper has 7 questions.

Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working will gain no credit.

Written by Rosemary Smith \& Shaun Armstrong
© Solomon Press
These sheets may be copied for use solely by the purchaser's institute.

1. Given that $y=\mathrm{e}^{\arctan x}$,
(a) find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
(4 marks)

The curve $y=\mathrm{e}^{\arctan x}$ has a point of inflexion.
(b) Find the coordinates of this point of inflexion.
(3 marks)
2. (a) Prove that

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(\operatorname{arcosh} x)=\frac{1}{\sqrt{x^{2}-1}}
$$

(3 marks)
(b) Find

$$
\begin{equation*}
\int \operatorname{arcosh} x \mathrm{~d} x . \tag{4marks}
\end{equation*}
$$

3. Find

$$
\int_{0}^{\frac{\pi}{4}} \frac{1}{1+\sin 2 x} d x .
$$

4. (a) Find

$$
\begin{equation*}
\int \frac{1}{\sqrt{4 x^{2}-4 x+10}} \mathrm{~d} x \tag{6marks}
\end{equation*}
$$

(b) Hence evaluate

$$
\int_{\frac{1}{2}}^{2} \frac{1}{\sqrt{4 x^{2}-4 x+10}} \mathrm{~d} x
$$

giving your answer in terms of natural logarithms.
(3 marks)
5. (a) On the same axes sketch the curves with equations $y=2-\tanh x$ and $y=3 \operatorname{sech} x$, giving the coordinates of the points of intersection of the curves with the coordinate axes and the equations of the asymptotes.
(b) Solve the equation

$$
2-\tanh x=3 \operatorname{sech} x,
$$

giving your answers to 2 decimal places.
6.

$$
I_{n}=\int_{0}^{\frac{\pi}{2}} \sin ^{n} x \mathrm{~d} x, \quad n \geq 0
$$

(a) Show that

$$
\begin{equation*}
I_{n}=\frac{n-1}{n} I_{n-2}, \quad n \geq 2 . \tag{7marks}
\end{equation*}
$$

The curve C is defined by $y=\sin ^{2} x, 0 \leq x \leq \pi$.

The area bounded by C and the positive x-axis is rotated through 2π radians about the x-axis.
(b) Find the volume of the solid generated giving your answer in terms of π.
7.

Fig. 1
Figure 1 shows the curve C which is part of the hyperbola with parametric equations

$$
x=a \cosh t, \quad y=2 a \sinh t,
$$

where a is a positive constant and $x \geq a$. The lines l_{1} and l_{2} are asymptotes to C.
(a) Show that the radius of curvature of C at its vertex is $4 a$.
(b) Show that an equation of the tangent to C at the point $P(a \cosh p, 2 a \sinh p)$ is

$$
2 x \cosh p-y \sinh p=2 a .
$$

The tangent to the curve C at P meets the asymptote l_{1} at Q.
Given that $Q S$ is parallel to the y-axis, where S is the focus,
(c) show that $p=\frac{1}{2} \ln 5$.

