GCE Examinations

Pure Mathematics Module P5

Advanced Subsidiary / Advanced Level

Paper E

Time: 1 hour 30 minutes

Instructions and Information

Candidates may use any calculator except those with a facility for symbolic algebra and/or calculus.

Full marks may be obtained for answers to ALL questions.
Mathematical and statistical formulae and tables are available.
This paper has 8 questions.

Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working will gain no credit.

Written by Rosemary Smith \& Shaun Armstrong
© Solomon Press
These sheets may be copied for use solely by the purchaser's institute.

1. A student without a calculator must find the value of x given that $\operatorname{artanh} x=\ln 3$.

With clear working, show how the student could find x and state the value he should obtain.
(4 marks)
2.

$$
\mathrm{f}(x)=\sin 2 x-x \cosh ^{2} x .
$$

(a) Find $\mathrm{f}^{\prime}(x)$.
(b) Show that the curve with equation $y=\mathrm{f}(x)$ has a stationary point in the interval $0.3<x<0.4$.
3. Given that

$$
\int_{0}^{\frac{2 \pi}{3}} \frac{1}{5+4 \cos x} \mathrm{~d} x=a \pi, \quad a \in \mathbb{Q},
$$

use the substitution $t=\tan \left(\frac{1}{2} x\right)$ to find the value of a.
4. The curve C has equation $y=a \cosh \left(\frac{x}{a}\right)$, where a is a positive constant.

The area bounded by the curve C, the x-axis and the lines $x=-a$ and $x=a$ is rotated through 2π radians about the x-axis.

Show that the curved surface area of the solid generated is $\pi a^{2}(\sinh 2+2)$.
5. The intrinsic equation of the curve C is $s=2 \psi$.

Given that s is measured from the origin,
(a) find a Cartesian equation of C,
(b) sketch C.
6. (a) Using the definitions of hyperbolic functions in terms of exponential functions, prove that

$$
\begin{equation*}
\cosh (x+y) \equiv \cosh x \cosh y+\sinh x \sinh y \tag{4marks}
\end{equation*}
$$

Given that

$$
5 \cosh x+4 \sinh x \equiv R \cosh (x+\alpha)
$$

find
(b) the value of R,
(c) the value of α, giving your answer in terms of natural logarithms.
(d) Hence, or otherwise, state the minimum value of $5 \cosh x+4 \sinh x$.
7.

$$
I_{n}=\int_{0}^{1} x^{n} \mathrm{e}^{x^{2}} \mathrm{~d} x, \quad n \geq 0
$$

(a) Show that

$$
\begin{equation*}
I_{n}=\frac{1}{2} \mathrm{e}-\frac{1}{2}(n-1) I_{n-2}, \quad n \geq 2 \tag{5marks}
\end{equation*}
$$

(b) Hence find

$$
I_{n}=\int_{0}^{1} x^{5} \mathrm{e}^{x^{2}} \mathrm{~d} x,
$$

giving your answer in terms of e.
8. The line with equation $y=m x+c$ is a tangent to the parabola with equation $y^{2}=8 x$.
(a) Show that $m c=2$.

The lines l_{1} and l_{2} are tangents to both the parabola with equation $y^{2}=8 x$ and the circle with equation $x^{2}+y^{2}=2$.
(b) Find the equations of l_{1} and l_{2}.

END

