GCE Examinations

Pure Mathematics Module P5

Advanced Subsidiary / Advanced Level Paper D

Time: 1 hour 30 minutes

Instructions and Information

Candidates may use any calculator except those with a facility for symbolic algebra and/or calculus.

Full marks may be obtained for answers to ALL questions.
Mathematical and statistical formulae and tables are available.
This paper has 7 questions.

Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working will gain no credit.

Written by Rosemary Smith \& Shaun Armstrong
© Solomon Press
These sheets may be copied for use solely by the purchaser's institute.

1. $y=\frac{\operatorname{cosech} x}{x^{2}+1}$.
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(4 marks)
(b) Find the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $x=0.5$, giving your answer to 2 decimal places. (1 mark)
2. A curve has intrinsic coordinates (s, ψ) and radius of curvature ρ.

Given that $\rho=2(s+a)$, where a is constant, show that the intrinsic equation of the curve can be written in the form

$$
s=A \mathrm{e}^{2 \psi}-a,
$$

where A is constant.
(5 marks)
3. (a) Prove that

$$
\sinh 3 x \equiv 4 \sinh ^{3} x+3 \sinh x
$$

(b) Hence, or otherwise, solve the equation

$$
\sinh 3 x=7 \sinh ^{2} x,
$$

giving your answers in terms of natural logarithms where appropriate.
(6 marks)
4. (a) Find $\int \frac{1}{\sqrt{9-4 x^{2}}} \mathrm{~d} x$.
(b) Find $\quad \int \frac{1-2 x}{\sqrt{9-4 x^{2}}} \mathrm{~d} x$.
(c) Hence, or otherwise, solve the differential equation

$$
\sqrt{9-4 x^{2}} \frac{\mathrm{~d} y}{\mathrm{~d} x}=y(1-2 x)
$$

given that $y=1$ when $x=0$.
5. The curve C has equation $y^{2}=4 a x$, where a is a positive constant.
(a) Show that an equation of the tangent to C at the point $P\left(a p^{2}, 2 a p\right), p \neq 0$, is

$$
\begin{equation*}
y p=x+a p^{2} . \tag{4marks}
\end{equation*}
$$

The point $Q\left(a q^{2}, 2 a q\right)$, is on C where $q \neq 0$ and $p \neq q$. The chord $P Q$ passes through the focus of C.

Show that
(b) $p q=-1$,
(c) the tangent to C at P and the tangent to C at Q meet on the directrix of C.
6.

$$
I_{n}=\int_{0}^{\frac{\pi}{4}} \sec ^{n} x \mathrm{~d} x, \quad n \geq 0 .
$$

(a) Show that

$$
\begin{equation*}
(n-1) I_{n}=(\sqrt{2})^{n-2}+(n-2) I_{n-2}, \quad n \geq 2 \tag{7marks}
\end{equation*}
$$

(b) Hence find the exact value of I_{3}, giving your answer in terms of natural logarithms.
7. (a) Show that

$$
\begin{equation*}
\int \sqrt{a^{2}+x^{2}} \mathrm{~d} x=\frac{x}{2} \sqrt{a^{2}+x^{2}}+\frac{a^{2}}{2} \operatorname{arsinh}\left(\frac{x}{a}\right)+c . \tag{9marks}
\end{equation*}
$$

The parametric equations of the curve C are

$$
x=2 t, \quad y=t^{2}, \quad 0 \leq t \leq 3 .
$$

(b) Show that the length of C is given by

$$
2 \int_{0}^{3} \sqrt{1+t^{2}} \mathrm{~d} t
$$

(c) Find the length of C.

END

