PURE MATHEMATICS (A) UNIT 5

- 1. Given that $2 \frac{dy}{dx} = 1 + y^2$, and that y = 1 when x = 0, find y in terms of x. (6 marks)
- 2. (a) Differentiate $\arccos(2x)$ with respect to x. (3 marks)
 - (b) Evaluate $\int_{0}^{1/4} \frac{3}{\sqrt{1-4x^2}} dx$, giving your answer to 3 significant figures. (3 marks)
- 3. Starting from the definition of cosh in terms of exponential functions, prove that $\operatorname{arcosh} x = \ln[x + \sqrt{(x^2 1)}].$

Hence find the exact value of arcosh $\frac{13}{12}$, in terms of natural logarithms. (7 marks)

- 4. The parabola with equation $y^2 = 4ax$ passes through the point P with coordinates (6, 6)
 - (a) Find a and write down parametric equations for the parabola.

(3 marks)

(b) Find the radius of curvature of the parabola at the point $(\frac{3}{2}, 3)$.

(5 marks)

5. If $I_n = \int x^n (1 + x^2)^5 dx$, prove that for $n \ge 2$,

$$f(n)I_n = x^{n-1}(1+x^2)^6 - (n-1)I_{n-2}$$

where f(n) is a linear function of n to be found.

(10 marks)

6. The diagram shows the curve whose equation is $y = \frac{x^2}{2}$, $x \ge 0$. The angle between the tangent at P(x, y) and the x-axis is ψ . The arc length from O to P is s.

(a) Show that $s = \int_0^{\arcsin x} \cosh^2 u \, du$ and that $x = \tan \psi$.

(7 marks)

(b) Deduce that the intrinsic equation of the curve is $s = \frac{1}{2} [\sec \psi \tan \psi + \operatorname{arsinh} (\tan \psi)]$.

(5 marks)

PURE MATHEMATICS 5 (A) TEST PAPER 5 Page 2

- 7. The arc *l* joins the points (1, 2) and (8, $4\sqrt{2}$) on the curve with equation $y = 2\sqrt{x}$.
 - (a) Show that the length of l is given by

$$\int_{1}^{8} \sqrt{1 + \frac{1}{x}} dx$$

and use the trapezium rule, with seven strips of equal width, to estimate this integral.

Give your answer to 2 significant figures.

(6 marks)

- (b) Show that the area of the curved surface formed when l is rotated once about the x-axis is $\frac{8\pi}{3} (27 2\sqrt{2}).$ (5 marks)
- 8. The curve C is the ellipse with parametric equations $x = a \cos \theta$, $y = ka \sin \theta$, where k and a are real constants and k < 1.
 - (a) Find a cartesian equation of C.

- (2 marks)
- (b) State (i) the eccentricity of C, (ii) the coordinates of the foci of C.
- (4 marks)
- (c) Show that if the line y = mx + c is a tangent to C, then $a^2(m^2 + k^2) = c^2$.
- (5 marks)
- (d) Deduce the values of m for which the line y = mx + 9 is a tangent to the ellipse $x^2 + 4y^2 = 9$.
 - (4 marks)