- 1. Find, in the form ax + by = c, an equation of the normal to the curve $y = \arcsin(2x)$ at the point where $x = \frac{1}{4}$. (5 marks)
- 2. Find, in terms of e, the exact value of $\int_{0}^{3} \sinh x \cosh x \, dx$. (5 marks)
- 3. (a) Starting from the definitions of the hyperbolic functions in terms of exponentials, prove that

$$\coth^2 x - \operatorname{cosech}^2 x = 1.$$
 (3 marks)

- (b) Solve the equation $\coth^2 x = 2 \operatorname{cosech} x$, giving your answers in terms of natural logarithms.

 (8 marks)
- 4. A parabola has parametric equations $x = at^2$, y = 2at, where a is a non-zero constant. P and Q are the points on the parabola where t = p and t = p + k, respectively.
 - (a) Find an equation of the chord PQ. (6 marks)
 - (b) Using your answer to (a), deduce the equation of the tangent to the parabola at P.

 (2 marks)
 - (c) Show that if the tangents at P and Q are perpendicular, then $p^2 + kp + 1 = 0$. (3 marks)
- 5. (a) Sketch the graph of $y = \cosh x$. (2 marks)
 - (b) If $f(x) = \frac{1}{3} \sinh x (2 + \cosh^2 x)$, show that $f'(x) = \cosh^3 x$. (5 marks)
 - (c) The arc of the curve $y = (\cosh x)^{3/2}$ between the points where x = 0 and $x = \ln 3$ is rotated once completely about the x-axis. Calculate the volume of the solid generated.

 (5 marks)
- 6. The gradient G of a curve at the point (x, y) is given by $G = \sqrt{(9 + x^2)}$. The curve passes through the point P(0, 1).
 - (a) Find an equation of the curve in the form y = f(x). (10 marks)
 - (b) Find the radius of curvature of the curve at the point where x = 1. (5 marks)
- 7. (a) Given that $I_n = \int_0^1 x^n \cosh x \, dx$, where *n* is a positive integer, prove that, for $n \ge 2$, $I_n = \sinh 1 n \cosh 1 + n(n-1)I_{n-2}.$ (11 marks)
 - (b) Hence find the value of I_4 , leaving your answer in terms of hyperbolic functions.