mark scheme

Practice Paper A : Mechanics 1

Question Number	General Scheme		Marks
Number			
1	$s = 0.1 \text{ m}, u = 3 \text{ ms}^{-1}, a = -g \text{ ms}^{-2}, t = ?$ Use of $s = ut + \frac{1}{2}at^2 \rightarrow 0.1 = 3t - 4.9t^2$	$M1 - use of$ $s = ut + \frac{1}{2}at^{2}$	M1
	$4.9t^2 - 3t + 0.1 = 0$	A1 – correct values for s , u , a and t	A1
	$t = \frac{3 \pm \sqrt{3^2 - 4(4.9)(0.1)}}{2(4.9)}$	M1 – correct method to solve <i>their</i> 3TQ	M1
	$\therefore t = 0.576, 0.0353$	A1ft – one correct value of t , ft <i>their</i> 3TQ	A1
	$\therefore t = 0.57, \ 0.035$	A1 – both values of t correct to 2 or 3 sf cao	A1
		Total	5

2 (a)	$\mathbf{v} = \frac{\mathbf{i} - \mathbf{j} - (3\mathbf{i} + 6\mathbf{j})}{4} = -0.5\mathbf{i} - 3.5\mathbf{j}$	M1 – method to find velocity vector of S A1 – correct velocity vector	M1 A1
	$\mathbf{r} = 3\mathbf{i} + 6\mathbf{j} + t(-0.5\mathbf{i} - 3.5\mathbf{j})$	$\mathbf{dM1} - \text{use of } \mathbf{r} = \mathbf{r}_0 + \mathbf{v}t$	M1
	$\therefore \mathbf{r} = (3 - 0.5t)\mathbf{i} + (6 - 3.5t)\mathbf{j}$	A1 – cao AG	A1 (4)
(b)	When north, $\mathbf{i} = 0$: $3 = 0.5t \rightarrow t = 6 s$	M1 – sets $3 - 0.5t = 0$	M1
	$\mathbf{r} = (3 - 0.5(6))\mathbf{i} + (6 - 3.5(6))\mathbf{j}$	$\mathbf{M1} - \text{substitutes their value of } t$ into r	M1
	$\therefore \mathbf{r} = -15 \mathbf{j}$	A1 – correct position vector	A1 (3)
(c)	$\mathbf{r} = -7\mathbf{i} - 64\mathbf{j}$	B1 – correct position vector after 20 seconds	B1
	displacement = $-7\mathbf{i} - 64\mathbf{j} - (3\mathbf{i} + 6\mathbf{j})$	M1 – works out displacement by doing <i>their</i> value for the position	M1
	$(=-10\mathbf{i}-70\mathbf{j})$	vector of S at $t = 20$ – position vector of S at $t = 0$	
	$\therefore \text{ distance travelled} = \sqrt{10^2 + 70^2}$	dM1 – use of Pythagoras to find distance	M1
	$=\sqrt{5000}=50\sqrt{2}$	A1 – correct distance OE	A1 (4)
		Total	11

3	m(A): $20g(1) - 294(2.5) + Mg(3.5) = 0$	M2 – moments equation about any point with three terms (condone two errors) A1 – correct moments equation	M2 A1
	M = 15.714 = 16(N)	A1 – correct value of M or R_A	Al
	$R(\uparrow^+): R_A + 294 - 20g - Mg = 0$	M1 – resolves vertically to obtain secondary equation or uses another moments equation A1 – correct second equation A1 – both M and R_A found	M1 A1 A1
	$\therefore R_A = 55.9972 = 56(N)$	R_{I} = both M and R_{A} found correct to two or three significant figures	AI (7)
ALT	Moments equations about other points:	•	
	m(centre): $R_A(1) - 294(1.5)$	5) + Mg(2.5) = 0	
	m(C): 294(1) - 20g(2.5) + $R_A(3.5) = 0$ m(B): 20g(1.5) - $R_A(2.5) - Mg(1) = 0$		
	Accept moments equations about any other points as long as they are clearly defined.		
		Total	7

4 (a)	$R(\rightarrow^+):T_{AC}\cos 30 - 5\cos 45 = 0$	M1 – attempts to resolve in horizontal plane, must see two terms. Condone sin/ cos errors A1 – correct equation	M1 A1
	$T_{AC} = \frac{5\cos 45}{\cos 30} = 4.0824 = 4.08(N)$	A1 – cao	A1 (3)
(b)	$R(\uparrow^+): T_{AC} \sin 30 + 5 \sin 45 - (10 + k)g = 0$	M1 – attempts to resolve in vertical plane, must see three terms. Condone sin/ cos errors A1ft – correct equation ft <i>their</i> T_{AC}	M1 A1
	$k = \frac{(4.02824)\sin 30 + 5\sin 45}{g} - 10$		
	k = -9.4337 = -9.4	A1 – cao to two or three significant figures	A1 (3)
NOTE	Working in radians throughout will automatica (b).	lly sacrifice the final A1 in (a) and	
		Total	6

5	Relevant diagram: $\frac{1}{5}RN$ $\frac{1}{5}RN$ $20gN$	100 cos α N	
	$R(^{n+}): R - 20g\cos\alpha = 0$ $R = 20g\cos\alpha$	M1 – resolves perpendicular to the plane A1 – correct R	M1 A1
	$R(\nearrow^{+}):100\cos\alpha - \frac{1}{5}(20g\cos\alpha) - 20g\sin\alpha = 0$	B1 – use of $\frac{1}{5}R$ at any stage (may even appear on a diagram) M1 – resolves parallel to the plane with three terms A1 – correct equation	B1 M1 A1
	$\therefore 100 \cos \alpha - 4g \cos \alpha = 20g \sin \alpha$ $\therefore \cos \alpha (100 - 4g) = 20g \sin \alpha$		
	$\therefore \tan \alpha = \frac{100 - 4g}{20g}$	$dM1 - use of$ $tan \alpha = \frac{\sin \alpha}{\cos \alpha}$ $A1 - correct expression$	M1 A1
	$\therefore \alpha = 17.234 = 17^{\circ}$	A1 – correct angle given to two or three significant figures. Accept 0.30 for radian equivalent	A1
		Total	8

6 (a)	Relevant diagram:		
()		0 ms^{-1}	
		$\overline{}$	
	$\begin{pmatrix} m \text{ kg} \end{pmatrix}$ $\begin{pmatrix} m \text{ m} \end{pmatrix}$	ı kg	
	$x \text{ ms}^{-1} \rightarrow$	2 ms^{-1}	
	speed of A after impulse = $3 (ms^{-1})$	B1 – correct speed of A , can be implied	B 1
	By COLM:	M1 – applies the conservation of linear	M1
	3m = mx + 2m	momentum	
	$x = 3 - 2 = 1 \text{ (ms}^{-1} \text{ to the right)}$	A1 – correct equation A1 – correct value for the	A1 A1
	x = 3 - 2 = 1 (lins to the light)	speed of A after collision	(4)
(b)			
(0)	Relevant diagram: $p \rightarrow 2 \text{ ms}^{-1}$	0 ms^{-1}	
	$B \longrightarrow C$		
	$\begin{pmatrix} m \text{ kg} \end{pmatrix}$	m kg	
	x ms ⁻¹	$2x \text{ ms}^{-1}$	
	By COLM:	M1 – applies the	M1
	2m = mx + 2mx	conservation of linear momentum	
		A1 – correct equation	A1
	3x = 2		
	2	A1 – correct value of x	A1
	$x = \frac{2}{3} (\text{ms}^{-1} \text{ to the right})$		
			(3)
(c)	Yes there will be a subsequent collision because	B1 – a correct conclusion	B1
. ,	both A and B move to the right after B collides with C and the speed of $A >$ speed of B .	conveying all the underlined ideas owtte	(1)
		Total	8

7			M1
(a)	Considering A: $T - 3g = 3a$	M1 – considers one of the masses and uses N2L	
	Considering <i>B</i> : $7g - T = 7a$	A1 – a correct equation for both A and B	A1
	$4g = 10a \rightarrow a = 3.92 \text{ (ms}^{-2}\text{)}$	A1 – correct a to two or three significant figures	A1
	T = 41.2 (N)	A1 – correct T to two or three significant figures	A1 (4)
(b)	$R_P - 2T = 0$	M1 – considers the entire system and forms a correct equation	M1
	$R_P = 82.4 \text{ (N)}$	A1ft – correct value for the resultant force on the pulley ft <i>their</i> (a)	A1 (2)
(c)	s = 0.1, $u = 0$, $v = ?$, $a = 3.92$	M1 – attempts to find the speed of $(A \text{ and}) B$ when B hits the	M1
	$v = \sqrt{2(3.92)(0.1)} = 0.8854$	ground using $v^2 = u^2 + 2as$ A1 – correct value for speed of <i>B</i> as it hits the ground	A1
	$s = ?, \ u = 0.8854, v = 0, \ a = -g$ $s = \frac{0^2 - (0.8854)^2}{2(-g)} = 0.0399$	dM1 – attempts to find the height A gains after B hits the ground using $v^2 = u^2 + 2as$ A1ft – correct value for s ft <i>their</i> value for the speed of B as it hits the ground	M1 A1
	x = 0.5 + 0.1 + their 0.0399	M1 – correct method to find x	M1
	x = 0.64	A1 – correct value of x to two or three significant figures, cso	A1 (6)
		Total	12

8			
(a)	Consider system:	M1 receives herizontelly and	M1
	5400 - 750 - 500 = (2400 + 1000)a	M1 – resolves horizontally and considers the entire system	M1
	2100 120 200 (2100 11000)	A1 – correct equation	A1
	$a = 1.2205 = 1.22 \text{ (ms}^{-2}\text{)}$	A1 – correct value for the	A1
	()	acceleration of the system	(3)
(b)	$1.22 = \frac{v - 0}{10}$	$\mathbf{M1} - \text{use of } v = u + at \mathbf{OE}$	M1
(0)	1.22 - 10		
	$v = 12.2 \text{ (ms}^{-1}\text{)}$	A1ft – correct value for the	A1
		speed of the system when $t = 10$ ft <i>their</i> (a)	(2)
(c)	Consider Caravan (or Trailer):	M1 – applies N2L to either the	M1
	5400 750 T 2400(1 220)	caravan or trailer	A1
	5400 - 750 - T = 2400(1.220)	A1 – correct equation	AI
	:: T = 1720 (N)	A1 – correct value for the	A1
		tension in the tow bar AWRT	(3)
(d)	a = -0.3676	B1 – correct value for the	B1
(u)	<i>u</i> = -0.5070	deceleration of the system	DI
			264
	$s = \frac{v^2 - u^2}{2a} = \frac{0 - (1.22 \times 30)^2}{-2(0.3676)}$	M1 – use of $v^2 = u^2 + 2as$ to find distance travelled by the	M1
	2a -2(0.3676)	system	
	-1820 (m)	A1 – correct equation	A1 A1
	=1820 (m)	A1 – correct value for the distance travelled AWRT.	(4)
NOTE	For part (d), some candidates may go on to cale		
	by the system from $t = 0$. Provided 1820 (m) is subsequent working and still award these candidates the system of the system o		
(e)	Considers Caravan (or Trailer):		
		M1 – considers either the	M1
	F - 750 = 2400(-0.3676)	caravan or trailer using N2L	
	F = 130 (N)	A1 – correct value of the	A1
		magnitude of the force in the rod	
	(Since negative,) the force is a tension.	A1 – identifies it is a tension	A1
		force (reason not needed)	(3)
(f)	B1 – correct shape of the speed-time graph (starts off at 0, increases and then		B1
	decreases, triangle shape) B1 – line for when the system is accelerating should be steeper than the line for		B1
	decelerating		DI
	B1 – $t = 0,30$ shown on the graph (values of		B1 (3)
	Candidates with errors in the previous parts can speed time graph ft their values	n score B0 B0 B1 for a correct	(3)
	-r · · · · · · · · · · · · · · · · · · ·	Total	18