mark

 schemePractice Paper A: Mechanics 1

Question Number	General Scheme		Marks
1	$s=0.1 \mathrm{~m}, u=3 \mathrm{~ms}^{-1}, a=-g \mathrm{~ms}^{-2}, t=\text { ? }$ Use of $s=u t+\frac{1}{2} a t^{2} \rightarrow 0.1=3 t-4.9 t^{2}$ $4.9 t^{2}-3 t+0.1=0$	M1 - use of $s=u t+\frac{1}{2} a t^{2}$ A1 - correct values for s, u, a and t	M1 A1
	$t=\frac{3 \pm \sqrt{3^{2}-4(4.9)(0.1)}}{2(4.9)}$	M1 - correct method to solve their 3TQ	M1
	$\therefore t=0.576 \ldots, 0.0353 \ldots$ $\therefore t=0.57,0.035$	A1ft - one correct value of t, ft their 3TQ A1 - both values of t correct to 2 or 3 sf cao	A1 A1
		Total	5

(a)	$\mathbf{v}=\frac{\mathbf{i}-\mathbf{j}-(3 \mathbf{i}+6 \mathbf{j})}{4}=-0.5 \mathbf{i}-3.5 \mathbf{j}$	M1 - method to find velocity vector of S A1 - correct velocity vector	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
(b)	$\begin{aligned} & \mathbf{r}=3 \mathbf{i}+6 \mathbf{j}+t(-0.5 \mathbf{i}-3.5 \mathbf{j}) \\ & \therefore \mathbf{r}=(3-0.5 t) \mathbf{i}+(6-3.5 t) \mathbf{j} \end{aligned}$	$\begin{aligned} & \mathbf{d M 1} \text { - use of } \mathbf{r}=\mathbf{r}_{0}+\mathbf{v} t \\ & \mathbf{A 1}-\text { cao } \mathbf{A G} \end{aligned}$	M1 A1 (4)
	When north, $\mathbf{i}=0: 3=0.5 t \rightarrow t=6 \mathrm{~s}$	M1 - sets 3-0.5t $=0$	M1
	$\mathbf{r}=(3-0.5(6)) \mathbf{i}+(6-3.5(6)) \mathbf{j}$	M1 - substitutes their value of t into \mathbf{r}	M1
	$\therefore \mathbf{r}=-15 \mathbf{j}$	A1 - correct position vector	
(c)	$\mathbf{r}=-7 \mathbf{i}-64 \mathbf{j}$	B1 - correct position vector after 20 seconds	B1
	$\text { displacement }=-7 \mathbf{i}-64 \mathbf{j}-(3 \mathbf{i}+6 \mathbf{j})$ $(=-10 \mathbf{i}-70 \mathbf{j})$	M1 - works out displacement by doing their value for the position vector of S at $t=20-$ position vector of S at $t=0$	M1
	$\begin{aligned} & \therefore \text { distance travelled }=\sqrt{10^{2}+70^{2}} \\ & =\sqrt{5000}=50 \sqrt{2} \end{aligned}$	dM1 - use of Pythagoras to find distance $\mathbf{A 1}$ - correct distance $\mathbf{O E}$	
		Total	11

3	$\mathrm{m}(A): 20 g(1)-294(2.5)+M g(3.5)=0$	M2 - moments equation about any point with three terms (condone two errors) A1 - correct moments equation	M2 A1
	$M=15.714 \ldots=16(\mathrm{~N})$	A1 - correct value of M or $R_{\text {A }}$	A1
	$R\left(\uparrow^{+}\right): R_{A}+294-20 g-M g=0$ $\therefore R_{A}=55.9972 \ldots=56(\mathrm{~N})$	M1 - resolves vertically to obtain secondary equation or uses another moments equation A1 - correct second equation A1 - both M and R_{A} found correct to two or three significant figures	A1 A1
ALT	Moments equations about other points: $\begin{gathered} \mathrm{m}(\text { centre }): R_{A}(1)-294(1.5)+M g(2.5)=0 \\ \mathrm{~m}(C): 294(1)-20 g(2.5)+R_{A}(3.5)=0 \\ \mathrm{~m}(B): 20 g(1.5)-R_{A}(2.5)-M g(1)=0 \end{gathered}$ Accept moments equations about any other points as long as they are clearly defined.		
		Total	7

4 (a)	$R\left(\rightarrow^{+}\right): T_{A C} \cos 30-5 \cos 45=0$	M1 - attempts to resolve in horizontal plane, must see two terms. Condone \sin / \cos errors A1 - correct equation	M1 A1
(b)	$T_{A C}=\frac{5 \cos 45}{\cos 30}=4.0824 \ldots=4.08(\mathrm{~N})$	A1 - cao	A1 (3)
	$R\left(\uparrow^{+}\right): T_{A C} \sin 30+5 \sin 45-(10+k) g=0$	M1 - attempts to resolve in vertical plane, must see three terms. Condone sin/ cos errors A1ft - correct equation ft their $T_{A C}$	M1 A1
	$k=\frac{(4.02824 \ldots) \sin 30+5 \sin 45}{g}-10$		
	$k=-9.4337 \ldots=-9.4$	A1 - cao to two or three significant figures	
NOTE	Working in radians throughout will automatically sacrifice the final A1 in (a) and (b).		
		Total	6

5	Relevant diagram:		
	$\begin{aligned} & R\left(\nwarrow^{+}\right): R-20 g \cos \alpha=0 \\ & R=20 g \cos \alpha \end{aligned}$	M1 - resolves perpendicular to the plane A1 $-\operatorname{correct} R$	M1 A1
	$R\left(\nearrow^{+}\right): 100 \cos \alpha-\frac{1}{5}(20 g \cos \alpha)-20 g \sin \alpha=0$	B1 - use of $\frac{1}{5} R$ at any stage (may even appear on a diagram) M1 - resolves parallel to the plane with three terms A1 - correct equation	$\begin{array}{\|l} \text { B1 } \\ \\ \text { M1 } \\ \text { M1 } \end{array}$
	$\begin{aligned} & \therefore 100 \cos \alpha-4 g \cos \alpha=20 g \sin \alpha \\ & \therefore \cos \alpha(100-4 g)=20 g \sin \alpha \end{aligned}$		
	$\therefore \tan \alpha=\frac{100-4 g}{20 g}$	dM1 - use of $\tan \alpha=\frac{\sin \alpha}{\cos \alpha}$ A1 - correct expression	M1 A1
	$\therefore \alpha=17.234 \ldots=17^{\circ}$	A1 - correct angle given to two or three significant figures. Accept 0.30 for radian equivalent	A1
		Total	8

6 (a)	Relevant diagram:		
	speed of A after impulse $=3\left(\mathrm{~ms}^{-1}\right)$	B1 - correct speed of A, can be implied	B1
	By COLM: $\begin{aligned} & 3 m=m x+2 m \\ & x=3-2=1\left(\mathrm{~ms}^{-1} \text { to the right }\right) \end{aligned}$	M1 - applies the conservation of linear momentum A1 - correct equation A1 - correct value for the speed of A after collision	
(b)	Relevant diagram:		
	By COLM: $2 m=m x+2 m x$	M1 - applies the conservation of linear momentum A1 - correct equation	M1 A1
	$3 x=2$ $x=\frac{2}{3}\left(\mathrm{~ms}^{-1}\right.$ to the right $)$	A1 - correct value of x	A1 (3)
(c)	Yes there will be a subsequent collision because both A and B move to the right after B collides with C and the speed of $A>$ speed of B.	B1 - a correct conclusion conveying all the underlined ideas owtte	B1 (1)
		Total	8

7 (a)	Considering $A: T-3 g=3 a$ Considering $B: 7 g-T=7 a$	M1 - considers one of the masses and uses N2L A1 - a correct equation for both A and B	M1 A1
(b)	$\begin{aligned} & 4 g=10 a \rightarrow a=3.92\left(\mathrm{~ms}^{-2}\right) \\ & T=41.2(\mathrm{~N}) \end{aligned}$	A1 - correct a to two or three significant figures A1 - correct T to two or three significant figures	A1 A1 (4)
	$R_{P}-2 T=0$	M1 - considers the entire system and forms a correct equation	M1
	$R_{P}=82.4(\mathrm{~N})$	A1ft - correct value for the resultant force on the pulley ft their (a)	A1 (2)
(c)	$s=0.1, u=0, v=?, a=3.92$ $v=\sqrt{2(3.92)(0.1)}=0.8854 \ldots$	M1 - attempts to find the speed of $(A$ and $) B$ when B hits the ground using $v^{2}=u^{2}+2$ as A1 - correct value for speed of B as it hits the ground	M1 A1
	$\begin{aligned} & s=?, u=0.8854 \ldots, v=0, a=-g \\ & s=\frac{0^{2}-(0.8854)^{2}}{2(-g)}=0.0399 \ldots \end{aligned}$	dM1 - attempts to find the height A gains after B hits the ground using $v^{2}=u^{2}+2 a s$ A1ft - correct value for $s \mathrm{ft}$ their value for the speed of B as it hits the ground	M1 A1
	$\begin{aligned} & x=0.5+0.1+\text { their } 0.0399 \\ & x=0.64 \end{aligned}$	M1 - correct method to find x A1 - correct value of x to two or three significant figures, cso	M1 A1 (6)
		Total	12

8 (a)	Consider system: $5400-750-500=(2400+1000) a$	M1 - resolves horizontally and considers the entire system A1 - correct equation	M1 A1
(b)	$a=1.2205 \ldots=1.22\left(\mathrm{~ms}^{-2}\right)$	A1 - correct value for the acceleration of the system	A1 (3)
	$1.22=\frac{v-0}{10}$	$\mathbf{M 1}$ - use of $v=u+a t \mathbf{O E}$	M1
	$v=12.2\left(\mathrm{~ms}^{-1}\right)$	A1ft - correct value for the speed of the system when $t=10$ ft their (a)	A1 (2)
(c)	Consider Caravan (or Trailer): $5400-750-T=2400(1.220 \ldots)$	M1 - applies N2L to either the caravan or trailer A1 - correct equation	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
	$\therefore T=1720$ (N$)$	A1 - correct value for the tension in the tow bar AWRT	
(d)	$a=-0.3676 \ldots$	B1 - correct value for the deceleration of the system	B1
	$\begin{aligned} & s=\frac{v^{2}-u^{2}}{2 a}=\frac{0-(1.22 \times 30)^{2}}{-2(0.3676 \ldots)} \\ & =1820(\mathrm{~m}) \end{aligned}$	M1 - use of $v^{2}=u^{2}+2 a s$ to find distance travelled by the system A1 - correct equation A1 - correct value for the distance travelled AWRT.	
NOTE	For part (d), some candidates may go on to calculate the total distance travelled by the system from $t=0$. Provided $1820(\mathrm{~m})$ is seen, you should ignore this subsequent working and still award these candidates full credit.		
(e)	Considers Caravan (or Trailer): $F-750=2400(-0.3676 \ldots)$	M1 - considers either the caravan or trailer using N2L	M1
	$\therefore\|F\|=130(\mathrm{~N})$	A1 - correct value of the magnitude of the force in the rod	A1
	(Since negative,) the force is a tension.	A1 - identifies it is a tension force (reason not needed)	A1 (3)
(f)	B1 - correct shape of the speed-time graph (starts off at 0 , increases and then decreases, triangle shape) B1 - line for when the system is accelerating should be steeper than the line for decelerating B1 $-t=0,30$ shown on the graph (values of v not necessary) Candidates with errors in the previous parts can score B0 B0 B1 for a correct speed time graph ft their values		
		Total	18

