GCE Examinations

Pure Mathematics Module P6

Advanced Subsidiary / Advanced Level

Paper H

Time: 1 hour 30 minutes

Instructions and Information

Candidates may use any calculator except those with a facility for symbolic algebra and/or calculus.

Full marks may be obtained for answers to ALL questions.
Mathematical and statistical formulae and tables are available.
This paper has 7 questions.

Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working will gain no credit.

Written by Rosemary Smith \& Shaun Armstrong
© Solomon Press
These sheets may be copied for use solely by the purchaser's institute.

1. Given that

$$
t_{n+1}=t_{n}-4 \text { for } n \geq 1, \quad t_{1}=3
$$

prove by induction that $t_{n}=7-4 n$ for all integers $n, n \geq 1$.
(5 marks)
2. (a) On the same Argand diagram sketch the locus of the points defined by the equations
(i) $z+z^{*}=2$,
(ii) $\quad \arg \left(\frac{z-2}{z+2}\right)=\frac{\pi}{4}$, where $\operatorname{Im}(z) \geq 0$.
(6 marks)

The region R of the complex z-plane is defined by the inequalities

$$
z+z^{*} \leq 2, \quad \arg \left(\frac{z-2}{z+2}\right) \geq \frac{\pi}{4} \text { and } \operatorname{Im}(z) \geq 0
$$

(b) Shade the region R on the Argand diagram.
(2 marks)
3. The points A, B and C with coordinates $\left(x_{-1}, y_{-1}\right),\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ respectively lie on the curve $y=\mathrm{f}(x)$ where $x_{1}-x_{0}=x_{0}-x_{-1}=h$ and $y_{n}=\mathrm{f}\left(x_{n}\right)$.
(a) By drawing a sketch, or otherwise, show that

$$
\begin{equation*}
\mathrm{f}^{\prime}\left(x_{0}\right) \approx \frac{\mathrm{f}\left(x_{0}+h\right)-\mathrm{f}\left(x_{0}-h\right)}{2 h} . \tag{3marks}
\end{equation*}
$$

Given that

$$
\mathrm{f}^{\prime}(x)=\sqrt{2 x+\mathrm{f}(x)}, \quad \mathrm{f}(0)=1 \text { and } \mathrm{f}(0.2)=1.25
$$

(b) use two applications of the approximation in (a) with a step length of 0.2 to find an estimate for $\mathrm{f}(0.6)$.
4. The points A, B and C have position vectors \mathbf{a}, \mathbf{b} and \mathbf{c} respectively such that

$$
\mathbf{a}=2 \mathbf{i}-\mathbf{j}+\mathbf{k}, \quad \mathbf{b}=\mathbf{i}+q \mathbf{j}-3 \mathbf{k} \quad \text { and } \quad \mathbf{c}=3 \mathbf{i}-4 \mathbf{j}+5 \mathbf{k},
$$

where q is a constant and $q \neq 2$.
(a) Find $\overrightarrow{A B} \times \overrightarrow{A C}$, giving your answer in terms of q.
(b) Hence show that the vector $\mathbf{n}=4 \mathbf{i}-\mathbf{k}$ is perpendicular to the plane Π containing A, B and C for all real values of q.
(c) Find an equation of the plane Π, giving your answer in the form $\mathbf{r} . \mathrm{n}=p$.

Given that $q=-1$,
(d) find the volume of the tetrahedron $O A B C$.
5. (a) Use De Moivre's theorem to show that

$$
\begin{equation*}
\cos 5 \theta \equiv \cos \theta\left(16 \cos ^{4} \theta-20 \cos ^{2} \theta+5\right) . \tag{6marks}
\end{equation*}
$$

(b) By solving the equation $\cos 5 \theta=0$, deduce that

$$
\cos ^{2}\left(\frac{3 \pi}{10}\right)=\frac{5-\sqrt{5}}{8}
$$

6. (a) Find the first three derivatives of $\ln \left(\frac{1+x}{1-2 x}\right)$.
(b) Hence, or otherwise, find the expansion of $\ln \left(\frac{1+x}{1-2 x}\right)$ in ascending powers of x up to and including the term in x^{3}.
(4 marks)
(c) State the values of x for which this expansion is valid.
(d) Use this expansion to find an approximate value for $\ln \frac{4}{3}$, giving your answer to 3 decimal places.
7. $\quad \mathbf{A}=\left(\begin{array}{ccc}2 & a & 2 \\ -1 & b & -2 \\ 0 & 0 & c\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{ccc}6 & 5 & 2 \\ -1 & 0 & -2 \\ 0 & 0 & 5\end{array}\right) \quad$ and

$$
\begin{equation*}
(\mathbf{B}-2 \mathbf{I}) \mathbf{A}=3 \mathbf{I} \tag{i}
\end{equation*}
$$

where a, b and c are constants and \mathbf{I} is the 3×3 identity matrix.
(a) Find the values of a, b and c.
(b) Using equation (i), or otherwise, find \mathbf{A}^{-1}, showing your working clearly.

The transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is represented by the matrix \mathbf{A}.
(c) Find an equation satisfied by all the points which remain invariant under T.
T maps the vector $\left(\begin{array}{l}p \\ q \\ r\end{array}\right)$ onto the vector $\left(\begin{array}{c}4 \\ -5 \\ 3\end{array}\right)$.
(d) Find the values of p, q and r.

END

