GCE Examinations

Pure Mathematics Module P6

Advanced Subsidiary / Advanced Level

Paper E

Time: 1 hour 30 minutes

Instructions and Information

Candidates may use any calculator except those with a facility for symbolic algebra and/or calculus.

Full marks may be obtained for answers to ALL questions.

Mathematical and statistical formulae and tables are available.

This paper has 8 questions.

Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working will gain no credit.

Written by Rosemary Smith & Shaun Armstrong © Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

1. The point *P* represents a variable point z = x + iy in an Argand diagram where $x, y \in \mathbb{R}$. Given that the locus of *P* is a circle with centre -1 + i and radius 2, find

(a)	an equation of the circle in terms of z ,	(2 marks)
<i>(b)</i>	the points on the locus of P which represent real numbers.	(3 marks)

- 2. Prove by induction that $2^n > 2n$ for all integers $n, n \ge 3$. (6 marks)
- 3. (a) By using the series expansion for $\ln(1 + 2x)$ and the series expansion for e^x , or otherwise, and given that x is small, show that

`

$$\ln\left(1+2x\right)-2x\mathrm{e}^{-x}\approx Ax^3,$$

and find the value of A.

(b) Hence find

$$\lim_{x \to 0} \left(\frac{\ln(1+2x) - 2xe^{-x}}{x^3} \right).$$
 (2 marks)

(4 marks)

4.
$$\mathbf{A} = \begin{pmatrix} 2 & -1 & 1 \\ 0 & 1 & -1 \\ -3 & 3 & 1 \end{pmatrix}.$$

(a) Show that
$$\begin{pmatrix} 1\\1\\0 \end{pmatrix}$$
 is an eigenvector of **A** and find the corresponding eigenvalue.
(2 marks)

(b) Prove that A has only one real eigenvalue, showing your working clearly. (6 marks)

5. A transformation T from the z-plane to the w-plane is defined by

 $w = z^2$

where z = x + iy, w = u + iv and x, y, u and v are real.

(a) Show that T transforms the line Im z = 2 in the z-plane onto a parabola in the w-plane and find an equation of the parabola, giving your answer in terms of u and v.

(5 marks)

(2 marks)

The image in the *w*-plane of the half-line $\arg(z) = \frac{\pi}{4}$ is the half-line *l*.

(b) Find an equation of l.

The parabola and the half-line in the *w*-plane are represented on the same Argand diagram. Their point of intersection is represented by *P*.

(c) Find the complex number which is represented by P, giving your answer in the form a + ib where a and b are real.

(4 marks)

6. It is given that *y* satisfies the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 + y\cos x$$
 and $y = 1$ at $x = 0$.

(a) (i) Use the differential equation to find expressions for $\frac{d^2y}{dx^2}$ and $\frac{d^3y}{dx^3}$.

- (ii) Hence, or otherwise, find y as a series in ascending powers of x up to and including the term in x^3 .
- (iii) Use your series to estimate the value of y at x = -0.1 (10 marks)

(b) Use the approximation
$$\left(\frac{dy}{dx}\right)_0 \approx \frac{y_1 - y_{-1}}{2h}$$
 to estimate the value of y at $x = 0.1$
(3 marks)

Turn over

- Referred to an origin O, the points A, B, C and D have coordinates (1, 1, 0), (3, 2, 5), 7. (0, -1, -4) and (-2, -5, 0) respectively.
 - Find, in the form $\mathbf{r.n} = p$, an equation of the plane Π passing through A, B and C. *(a)*

	(6 marks)
The line l passes through D and is perpendicular to Π .	
(b) Find a vector equation of l .	(1 mark)
The line <i>l</i> meets the plane Π at the point <i>E</i> .	
(c) Find the coordinates of E .	(4 marks)
The point F is the reflection of D in Π .	
(d) Find the coordinates of F .	(2 marks)

The transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ is represented by the matrix **M** where 8.

 $\mathbf{M} = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 3 & 1 \\ 2 & 2 & 0 \end{pmatrix}.$

- Find \mathbf{M}^{-1} , showing your working clearly. *(a)*
- Find the Cartesian equations of the line mapped by the transformation T onto the line *(b)* with equations

$$\frac{x-1}{3} = \frac{y+1}{-3} = \frac{z}{4}.$$
 (7 marks)

END

(6 marks)