GCE Examinations

Pure Mathematics Module P6

Advanced Subsidiary / Advanced Level

Paper C

Time: 1 hour 30 minutes

Instructions and Information

Candidates may use any calculator except those with a facility for symbolic algebra and/or calculus.

Full marks may be obtained for answers to ALL questions.
Mathematical and statistical formulae and tables are available.
This paper has 7 questions.

Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working will gain no credit.

Written by Rosemary Smith \& Shaun Armstrong
© Solomon Press
These sheets may be copied for use solely by the purchaser's institute.

1. Given that y satisfies the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{e}^{x} \cosh (2 y+x), \text { with } y=1 \text { at } x=1,
$$

(a) use the approximation $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{0} \approx \frac{y_{1}-y_{0}}{h}$ to obtain an estimate for y at $x=1.01$,
(3 marks)
(b) use the approximation $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{0} \approx \frac{y_{1}-y_{-1}}{2 h}$ to obtain an estimate for y at $x=0.99$
(3 marks)
2. The points A, B and C have coordinates $(2,1,-1),(-2,4,-2)$ and $(a,-5,1)$ respectively, relative to the origin O, where $a \neq 10$.
(a) Find $\overrightarrow{A B} \times \overrightarrow{A C}$.
(4 marks)
The area of triange $A B C$ is $4 \sqrt{ } 10$ square units.
(b) Find the possible values of the constant a.
(3 marks)
3. (a) Given that $z=\cos \theta+\mathrm{i} \sin \theta$, show that

$$
z^{n}+\frac{1}{z^{n}}=2 \cos n \theta
$$

where n is a positive integer.
(2 marks)
The equation $5 z^{4}-11 z^{3}+16 z^{2}-11 z+5=0$ has no real roots.
(b) Use the result in part (a) to solve the equation, giving your answers in the form $a+\mathrm{i} b$ where $a, b \in \mathbb{R}$.
4. Given that $\mathbf{A}=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$,
(a) prove by induction that

$$
\mathbf{A}^{n}=\left(\begin{array}{ccc}
1 & n & \frac{1}{2} n(n+1) \\
0 & 1 & n \\
0 & 0 & 1
\end{array}\right)
$$

for all positive integers n.
(b) Find the inverse of \mathbf{A}^{n}.
5. Given that

$$
\mathrm{f}(x)=\arccos x, \quad-1 \leq x \leq 1,
$$

show that
(a) $\mathrm{f}^{\prime}(x)=\frac{-1}{\left(1-x^{2}\right)^{\frac{1}{2}}}$,
(b) $\left(1-x^{2}\right) \mathrm{f}^{\prime \prime}(x)-x \mathrm{f}^{\prime}(x)=0$.
(c) Use Maclaurin's theorem to find the expansion of $\mathrm{f}(x)$ in ascending powers of x up to and including the term in x^{3}.
(5 marks)
6. The eigenvalues of the matrix

$$
\mathbf{M}=\left(\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 0 & 1 \\
1 & 1 & 2
\end{array}\right)
$$

are λ_{1}, λ_{2} and λ_{3}.
(a) Show that $\lambda_{1}=2$ is an eigenvalue of \mathbf{M} and find the other two eigenvalues λ_{2} and λ_{3}.
(b) Find an eigenvector corresponding to the eigenvalue 2.

Given that $\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ are eigenvectors of \mathbf{M} corresponding to λ_{2} and λ_{3} respectively,
(c) write down a matrix \mathbf{P} such that $\mathbf{P}^{-1} \mathbf{M P}=\left(\begin{array}{ccc}\lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3}\end{array}\right)$.
7. The complex number $z=x+\mathrm{i} y$, where x and y are real, satisfies the equation

$$
|z+1+8 \mathbf{i}|=3|z+1| .
$$

The complex number z is represented by the point P in the Argand diagram.
(a) Show that the locus of P is a circle and state the centre and radius of this circle.
(7 marks)
(b) Represent on the same Argand diagram the loci

$$
|z+1+8 \mathbf{i}|=3|z+1| \quad \text { and } \quad|z|=\left|z-\frac{14}{5}\right|
$$

(c) Find the complex numbers corresponding to the points of intersection of these loci, giving your answers in the form $a+\mathrm{i} b$ where a and b are real.

END

