Question number		Scheme	Marks	
1.	(<i>a</i>)	x_{11} no. of coaches from A to D		
		x_{12} no. of coaches from A to E		
		x_{13} no. of coaches from A to F		
		x_{21} no. of coaches from <i>B</i> to <i>D</i>		
		x_{22} no. of coaches from <i>B</i> to <i>E</i>		
		x_{23} no. of coaches from <i>B</i> to <i>F</i>		
		x_{31} no. of coaches from <i>C</i> to <i>D</i>		
		x_{32} no. of coaches from <i>C</i> to <i>E</i>		
		x_{33} no. of coaches from <i>C</i> to <i>F</i>	B1	(1)
	(<i>b</i>)	Minimise $z = 40 x_{11} + 70x_{12} + 25x_{13}$		
		$+ 20 x_{21} + 40 x_{22} + 10 x_{23}$		
		$+35 x_{31} + 85 x_{32} + 15 x_{33}$	B1	(1)
	(c)	Depot $A x_{11} + x_{12} + x_{13} = 8$ (no. of coaches at A)		
		Depot $B x_{21} + x_{22} + x_{23} = 5$ (no. of coaches at B)		
		Depot $C x_{31} + x_{32} + x_{33} = 7$ (no. of coaches at <i>C</i>)	M1 A1	
		Depot $D x_{11} + x_{21} + x_{31} = 4$ (no. required at D)		
		Depot $E x_{21} + x_{22} + x_{32} = 10$ (no. required at E)		
		Depot $F x_{31} + x_{32} + x_{33} = 6$ (no. required at F)	M1 A1	
		Reference to number of coaches at A, B and C	B1	(5)
		= number of coaches at D , E and F		

Question number	Scheme	Marks	
2. (<i>a</i>)	$E \xrightarrow{A} \xrightarrow{7} \xrightarrow{13} \xrightarrow{13} \xrightarrow{6} \xrightarrow{7} \xrightarrow{13} \xrightarrow{7} \xrightarrow{13} \xrightarrow{7} \xrightarrow{13} \xrightarrow{7} \xrightarrow{7} \xrightarrow{13} \xrightarrow{7} \xrightarrow{7} \xrightarrow{7} \xrightarrow{7} \xrightarrow{7} \xrightarrow{7} \xrightarrow{7} 7$		
	<i>BC</i> : 17	M1	
	<i>EB</i> : 10	A1	(2)
<i>(b)</i>	<i>AE</i> (3), <i>ED</i> (5), <i>DB</i> (7), <i>BC</i> (17)	M1 A1	
	Complete with edge $CA(13)$		
	Total length 45 km	A1	(3)
(c)	Tour in original is A E D B D C A		
	Since <i>BC</i> is not in original network and shortest distance is <i>BD</i> plus <i>DC</i>	M1 A1	(2)
		(7 1	marks)

Question number	Scheme	Marks
3.	Suppose A chooses I with probability p	
	A chooses II with probability $(1-p)$	
	Expected gain if B chooses I $4p-5(1-p)$	
	II $-2p+6(1-p)$	M1 A1
	Optimal value when	
	4p - 5(1-p) = -2p + 6(1-p)	
	$p = \frac{11}{17}, \ 1 - p = \frac{6}{17}$	
	Play I, $\frac{11}{17}$ of time and II, $\frac{6}{17}$ of time	M1 A1
	Suppose B chooses I with probability q	
	<i>B</i> chooses II with probability $(1-q)$	
	Expected loss if A chooses I $4q-2(1-q)$	
	II $-5q+6(1-q)$	M1 A1
	Optimal value when	
	4q - 2(1 - q) = -5q + 6(1 - q)	
	$q = \frac{8}{17}, \ 1 - q = \frac{9}{17}$	M1 A1
	Play I, $\frac{8}{17}$ of time and II, $\frac{9}{17}$ of time	
	Value of game = $9p - 5(= 4p - 5(1-p)) = \frac{14}{17}$ gain to player <i>A</i>	M1 A1 (10)
	$[or 6 - 11q = -5q + 6(1 - q)] = \frac{14}{17} \text{ loss to Player } B]$	
		(10 marks)

Ques num	stion nber			Marks					
4.	<i>(a)</i>		W_1	W_2	W_3	Available			
		F_1	2	2		4			
		F_2		3		3			
		F_3		4	4	8			
		Require	2	9	4		M	A1 A1	
		$Cost 2 \times 7 + 2 \times 8$	$3 + 3 \times 2 +$	$-4 \times 6 + 4 \times$	3				
		=14 + 16 + 6	5 + 24 + 1	2=72			M	A1	(5)
	(<i>b</i>)	For occupied cells	$R_i + K_j =$	$= C_{ij}$ gives					
		$(1,1)R_1 + K_1 = 7; (1)$	$(1, 2)R_1 + R_1$	$K_2 = 8; (2, 2)$	$R_2 + K_2 =$	2			
		$(3,2)R_3 + K_2 = 6;$	M1	A1					
		Taking $R_1 = 0$ we							
		R_1 R_2 R_3	= 0 = -6 = -2	$K_1 = 7$ 0 9 5	$K_2 = 8$ 0 0 0	$K_3 = 5$ (6) (4) (0)	M 1	A1	
		Improvement indic	$ces I_{ii} = C_i$	$K_i - R_i - K_i$					
		$I_{13} = 6 - 5 - 0 = 1$	5	, <u>.</u>					
		$I_{21} = 9 - 7 - (-6)$	= 8						
		$I_{23} = 4 - 5 - (-6) =$	= 5					L A 1	
		$I_{31} = 5 - 7 - (-2) =$	= 0				M	AI	(6)
	(c)	No negative improminimum cost. If	ovement in there were	ndices and so a negative	b given so I_{ij} then us	lution is optimal and ging this route would red	ives luce M1		(1)
		0051.						(12 ma	urks)

Question number			Marks	5						
5.	(a)		Stage	State	Action	Cost	Value			
			2	0	В	2	2			
					С	3	3 ←			
				1	A	2	2			
					В	3	3			
					С	6	6 ←			
				2	A	1	1			
					В	2	2 ←		M1 A1 A1	
			1	0	В	2	2 + 3 = 5			
					С	3	$3+6=9 \leftarrow$		M1 A1	
				1	A	1	1 + 3 = 4			
					В	3	$3+6=9 \leftarrow$			
					С	6	6 + 2 = 8		A1	
				2	A	5	5 + 6 =11 ←			
					В	5	5 + 2 = 7			
									A1	
			0	0	A	4	4 + 9 = 13			
					В	3	3 + 9 = 12			
					С	5	5 + 11=16 ←		M1 A1	(9)
	(b)	Hence maxi	mum pro	fit is 16	1	1	1	I	B1	
		Tracing bac	ck through calculations the optimal strategy is CAC						M1 A1	(3)
			(12 m	arks)						

Question			Marks					
6.	(a)						Row minimum	
		17 24		19 16		8	17	
		12 23				5	12	
		16 24		21	18		16	
		12 24		18	14	4	12	
							!	
		Reducing rows gives:	0	7	2	1		
			0	11	4	3		
			0	8	5	2		
			0	12	6	2	-	
		Column minimum	0	7	2	1		M1 A1
		Reducing columns gives:			-0-	-0-	_	
			0	4	2	2		
			0	1	3	1		
			ø	5	4	1		M1 A1
		No assignment possible a	s zeroe	s can al	ll be co	overe	d by 2 lines (2<4)	B1
		Minimum uncovered eler	nent is	1				
		Applying algorithm gives	5:					
			-1	0	-0*	-0-		
			0 *	3	1	1		
			-	-0*	2	-0-		
			-0	-4	3	-0*		M1 A1, A1
		Now requires 4 lines to co	B1					
		(1, 3) - only zero in colu	mn 3					
		(3, 2) - row 1 already use	ed and 1	now on	ly zero	o in C	22	
		(4, 4) - only remaining p	ossibili	ty in C	4			
		(2, 1) - must then be used	d					
		I - C, $II - A$, $III - B$, $IV - B$	- D					M1 A1 (11)
	(b)	Cost of this assignment						
		19 + 12 + 24 + 14 = 69 m	ninutes					M1 A1 (2)
								(13 marks)

Ques num	stion nber				Sch	eme					Mark	S
7.	(a)		A(1)	<i>B</i> (5)	C(4)	D(2)	E(3)	F(6)	<i>G</i> (7)			
			-	103	89	42	54	143	153			
		В	103	-	60	98	56	99	59			
		С	89	60	-	65	38	58	77			
		D	(42)	98	65	-	45	111	139			
		Ε	54	56	38	45	-	95	100			
		F	143	99	(58)	111	95	-	75			
		G	153	59	77	139	100	75	-		M1 A1 A1	
		Vertices adde	d in order	ADECE	BFG							
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$										(5)
	(b)	Upper bound = 2 (weight of M.S.T.)										
		= 2(42 + 45 + 38 + 58 + 56 + 59)										
		= 2(298) = 596										(2)
	(c)	Short cut 1 replaces <i>FCEBG</i> by <i>FG</i> saving $(58 + 38 + 56 + 59) - 75 = 136$										
		Now upper bound is 460										
		Short cut 2 replaces EDA by EA saving $(45 + 42) - 54 = 33$										
		Now upper be	ound is 42	/							Al	(3)
		continued over										

