# GCE Examinations Advanced Subsidiary

# **Core Mathematics C4**

Paper A

Time: 1 hour 30 minutes

## Instructions and Information

Candidates may use any calculator EXCEPT those with the facility for symbolic algebra, differentiation and/or integration.

Full marks may be obtained for answers to ALL questions.

Mathematical formulae and statistical tables are available.

This paper has seven questions.

### Advice to Candidates

You must show sufficient working to make your methods clear to an examiner. Answers without working may gain no credit.



Written by Shaun Armstrong
© Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

#### 1. A curve has the equation

$$x^2(2+y) - y^2 = 0.$$

Find an expression for 
$$\frac{dy}{dx}$$
 in terms of x and y. (6)

2. 
$$f(x) = \frac{3}{\sqrt{1-x}}, |x| < 1.$$

(a) Show that 
$$f(\frac{1}{10}) = \sqrt{10}$$
. (2)

- (b) Expand f(x) in ascending powers of x up to and including the term in  $x^3$ , simplifying each coefficient. (3)
- (c) Use your expansion to find an approximate value for  $\sqrt{10}$ , giving your answer to 8 significant figures. (1)
- (d) Find, to 1 significant figure, the percentage error in your answer to part (c). (2)

#### **3.** Relative to a fixed origin, O, the line l has the equation

$$\mathbf{r} = (\mathbf{i} + p\mathbf{j} - 5\mathbf{k}) + \lambda(3\mathbf{i} - \mathbf{j} + q\mathbf{k}),$$

where p and q are constants and  $\lambda$  is a scalar parameter.

Given that the point A with coordinates (-5, 9, -9) lies on l,

(a) find the values of 
$$p$$
 and  $q$ , (3)

(b) show that the point B with coordinates 
$$(25, -1, 11)$$
 also lies on  $l$ . (2)

The point C lies on l and is such that OC is perpendicular to l.

(c) Find the coordinates of 
$$C$$
. (4)

(d) Find the ratio 
$$AC: CB$$
 (2)

4. During a chemical reaction, a compound is being made from two other substances. At time t hours after the start of the reaction, x g of the compound has been produced. Assuming that x = 0 initially, and that

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 2(x-6)(x-3),$$

- (a) show that it takes approximately 7 minutes to produce 2 g of the compound. (10)
- (b) Explain why it is not possible to produce 3 g of the compound. (2)

**5.** 



Figure 1

Figure 1 shows the curve with equation  $y = 4x^{\frac{1}{2}}e^{-x}$ .

The shaded region is bounded by the curve, the x-axis and the line x = 2.

(a) Use the trapezium rule with four intervals of equal width to estimate the area of the shaded region.

The shaded region is rotated through  $2\pi$  radians about the x-axis.

- (b) Find, in terms of  $\pi$  and e, the exact volume of the solid formed. (7)
- **6.** (a) Find

$$\int 2\sin 3x \sin 2x \, dx. \tag{4}$$

(b) Use the substitution  $u^2 = x + 1$  to evaluate

$$\int_0^3 \frac{x^2}{\sqrt{x+1}} \, dx.$$
 (8)

Turn over

**(5)** 

7.



Figure 2

Figure 2 shows the curve with parametric equations

$$x = \cos 2t$$
,  $y = \csc t$ ,  $0 < t < \frac{\pi}{2}$ .

The point P on the curve has x-coordinate  $\frac{1}{2}$ .

- (a) Find the value of the parameter t at P. (2)
- (b) Show that the tangent to the curve at P has the equation

$$y = 2x + 1. ag{5}$$

The shaded region is bounded by the curve, the coordinate axes and the line  $x = \frac{1}{2}$ .

(c) Show that the area of the shaded region is given by

$$\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} k \cos t \, \mathrm{d}t,$$

Hence find the exact area of the shaded region.

where k is a positive integer to be found.

**END** 

(d)

**(4)** 

**(3)**