mark scheme

Practice Paper A: Core Mathematics 4

Question Number	General Scheme	Marks
1	$x^{3}-2 x^{2}-5 x+6=(x-1)(x+2)(x-3) \quad \|$M1 - a fully correct method to factorise the cubic (i.e. use of the factor theorem, long division etc). A1 - correct factorisation	M1 A1
	Let $\begin{gathered} \frac{2(x+2)}{(x-1)(x+2)(x-3)}=\frac{2}{(x-1)(x-3)}=\frac{A}{x-1}+\frac{B}{x-3} \\ \therefore 2=A(x-3)+B(x-1) \end{gathered}$ B1 - simplifies the fraction by cancelling the common factor of $x+2$ M1 - correct method to separate the fraction into its parts	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \end{aligned}$
	Let $x=3: 2=2 B \rightarrow B=1$ dM1 - correct attempt to find the Let $x=1: 2=-2 A \rightarrow A=-1$ values of A and B A1 - one value correct	M1 A1
	$\therefore \frac{2 x+4}{(x-1)(x+2)(x-3)}=\frac{1}{x-3}-\frac{1}{x-1} \quad \begin{aligned} & \mathbf{A 1}-\text { cao, answers } \\ & \text { must be stated in this } \\ & \text { form at the end, } \\ & \text { otherwise award A0 } \end{aligned}$	A1
	Total	7
Note	Some candidates may not cancel the $x+2$, but apply partial fractions to get $\frac{2 x+4}{(x-1)(x+2)(x-3)}=\frac{A}{x-1}+\frac{B}{x-3}+\frac{C}{x+2}$ In this case, B1 becomes the third A1 which you should award for one correct value in addition to $C=0$.	

2 (a)	$f(x)=(4+x)^{-\frac{1}{2}}=\frac{1}{2}\left(1+\frac{1}{4} x\right)^{-\frac{1}{2}}$	B1 - correct expression for $f(x)$	B1
	$f(x) \simeq \frac{1}{2}[\underbrace{1+\left(-\frac{1}{2}\right)\left(\frac{1}{4} x\right)}_{\mathrm{B} 1}+\underbrace{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(\frac{1}{2!}\right)\left(\frac{1}{4} x\right)^{2}}_{\mathrm{M} 1 \mathrm{~A} 1}+\ldots]$ B1 - correct first two terms of the expansion M1 - third term of the form $\frac{n(n-1)}{2!} x^{2}$, condone one slip $\mathbf{A 1}$ - third term correctly expressed (need not be simplified for this mark)		B1 M1 A1
	$f(x)=\frac{1}{2}-\frac{1}{16} x+\frac{3}{256} x^{2}+\ldots$	A1 - cao, expansion fully simplified	A1 (5)
(b)	$4+x=7 \rightarrow x=3$ $\frac{\sqrt{7}}{7}=\frac{1}{2}-\frac{1}{16}(3)+\frac{3}{256}(3)^{2}+\ldots$ $\sqrt{7}=2.9257 \ldots$	$\underset{x}{\mathbf{B 1} \text { - correct value of }}$ M1 - substitutes 3 into their expansion A1ft - correct estimate of $\sqrt{7}$ using their expansion	B1 M1 A1 (3)
(c)	(It is correct to) one significant figure	B1 - cao, no ft	
		Total	9

(a)	$\int_{0}^{\frac{\pi}{4}} \tan x d x=[-\ln \|\cos x\|]_{0}^{\frac{\pi}{4}}$	B1 - correct integral	B1
	$=-\ln \left\|\cos \frac{\pi}{4}\right\|--\ln \|\cos 0\|$	M1 - substitutes limits the right way round	M1
	$=\ln \left(\frac{\sqrt{2}}{2}\right)^{-1}=\ln \left(\frac{2}{\sqrt{2}}\right)=\ln (\sqrt{2})$	M1 - uses the rule that $-\ln x=\ln \left(\frac{1}{x}\right)$ A1 - cao AG	M1 A1 (4)
(b)	$\begin{aligned} & x=\sin u \rightarrow d x=\cos u d u \\ & \therefore \int_{0}^{\frac{\sqrt{2}}{2}} \frac{5 x}{2-2 x^{2}}=\frac{5}{2} \int_{0}^{\frac{\pi}{4}} \frac{\sin u}{\cos ^{2} u}(\cos u) d u=\frac{5}{2} \int_{0}^{\frac{\pi}{4}} \tan u d u \end{aligned}$	M1 - substitutes $\sin u$ in replace of x B1 - correct limits A1 - integral becomes $k \int_{0}^{\frac{\pi}{4}} \tan u d u$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \end{aligned}$
	$=\frac{5}{2} \ln (\sqrt{2})$	A1 - cao	A1 (4)
		Total	8

4 (a)	Let $y=a^{x}$ $\ln y=x \ln a$	M1 - use of logarithims	M1
	Differentiate wrt $x: \frac{1}{y} \frac{d y}{d x}=\ln a$	A1 - correct implicit differentiation	A1
	$\frac{d y}{d x}=y \ln a=a^{x} \ln a$	A1- cso AG	A1 (3)
(b)	$2^{x} \ln 2-4 y \frac{d y}{d x}=x \frac{d y}{d x}+y$	B1 - correct differentiation on LHS M1 - application of the product rule on RHS	B1 M1
	$(x+4 y) \frac{d y}{d x}=2^{x} \ln 2-y$	M1 - rearranges for $\frac{d y}{d x}$	M1
	$\frac{d y}{d x}=\frac{2^{x} \ln 2-y}{x+4 y}$	$\begin{aligned} & \text { A1 - correct } \\ & \text { differentiation } \mathbf{O E} \end{aligned}$	A1
			(4)
		Total	7

5 (a)	$\sin 3 t=0 \rightarrow t=0, \frac{\pi}{3}, \ldots$	B1 - correct parameters	B1
	$\begin{aligned} & y=\frac{2}{2-\cos 3 t} \\ & \therefore y=\frac{2}{2-\cos 0}, \frac{2}{2-\cos \pi} \end{aligned}$	M1 - rearranges for y and substitutes their parameters to find A and B	M1
	$A(0,2), B\left(0, \frac{2}{3}\right)$	A1 - cao	A1 (3)
(b)	$\frac{d y}{d x}=\frac{d y}{d t} \times \frac{d t}{d x}$	M1 - this principle used or attempted at any point in the question	M1
	$\frac{d y}{d x}=\frac{-2(3 \sin 3 t)}{(2-\cos 3 t)^{2}} \times \frac{1}{3 \cos 3 t}$	M1 - use of the quotient rule to find $\frac{d y}{d t}$ B1 $-\operatorname{correct} \frac{d t}{d x}$	M1 B1
	$\frac{d y}{d x}=\frac{-2(3 \sin 3 t)}{(2-\cos 3 t)^{2}} \times \frac{\tan 3 t}{3 \cos 3 t}$	M1 - attempts to simplify answer into required form using $\frac{\sin x}{\cos x}=\tan x$	M1
	$\frac{d y}{d x}=-\frac{2 \tan 3 t}{(2-\cos 3 t)^{2}}$	A1- cao AG	A1 (5)
(c)	$x=\frac{\sqrt{3}}{2} \rightarrow t=\frac{\pi}{9}$	B1 - correct parameter	B1
	$\left.\frac{d y}{d x}\right\|_{t=\frac{\pi}{9}}=-\frac{2 \tan \left(\frac{\pi}{3}\right)}{\left(2-\cos \left(\frac{\pi}{3}\right)\right)^{2}}$	M1 - substitutes their parameter into $\frac{d y}{d x}$	M1
	$=-\frac{2 \sqrt{3}}{\frac{9}{4}}=-\frac{8 \sqrt{3}}{9}$	$\mathbf{A 1}--\frac{8 \sqrt{3}}{2}$	A1
	$y-\frac{4}{3}=-\frac{8 \sqrt{3}}{9}\left(x-\frac{\sqrt{3}}{2}\right)$	A1ft - equation of tangent OE	M1 (4)

(d)	$y-\frac{4}{3}=\frac{8 \sqrt{3}}{9}\left(x+\frac{\sqrt{3}}{2}\right)$	B1 - cao	B1 (1)
(e)	$P(\sqrt{3}, 0), Q(-\sqrt{3}, 0)$	B2 - coordinates of P and Q (B1 for each one)	B2
	$\begin{aligned} & A P=\sqrt{(\sqrt{3})^{2}+2^{2}}=\sqrt{7} \\ & A Q=\sqrt{(-\sqrt{3})^{2}+2^{2}}=\sqrt{7} \\ & \therefore A P=A Q \end{aligned}$	M1 - use of Pythagoras to work out $A P$ or $A Q$ A1 - correctly shows that $A P=A Q=\sqrt{7}$	
		Total	17

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{4}{*}{6} \& $6+4 \mu=5 \rightarrow \mu=-\frac{1}{4}$ \& B1 - correct μ \& B1

\hline \& $$
\begin{aligned}
& 1+\left(-\frac{1}{4}\right) a=\frac{3}{4} \\
& a=1
\end{aligned}
$$ \& M1 - attempt to find a
$$
\mathbf{A 1} \text { - correct } a
$$ \& M1
A1

\hline \& $a+\lambda=\frac{3}{4} \rightarrow \lambda=-\frac{1}{4}$ \& M1 - attempts to find λ or 9λ \& M1

\hline \& $$
\begin{aligned}
& \therefore 3-\frac{b}{4}=-\frac{11}{4} \\
& \frac{b}{4}=\frac{23}{4} \\
& b=23
\end{aligned}
$$ \& M1 - attempts to find b
$$
\mathbf{A 1}-\text { correct } b
$$ \& M1

A1

\hline \& \& Total \& 6

\hline
\end{tabular}

8 (a)	$\frac{d x}{d t}=k x$	B1 - forms a differential equation of the correct form	B1
	$\begin{aligned} & \frac{1}{x} \frac{d x}{d t}=k \\ & \int \frac{1}{x} \frac{d x}{d t} d t=\int k d t \\ & \int \frac{1}{x} d x=\int k d t \end{aligned}$	M1 - method to separate the variables A1 - variables correctly separated	M1 A1
	$\ln x=k t+c$	A1 - correct integration including constant	A1
	$\begin{aligned} & x=e^{k+c}=A e^{k t} \\ & 450=A e^{k(0)} \rightarrow A=450 \\ & 2103=450 e^{k(4)} \\ & k=\frac{1}{4} \ln \left(\frac{2103}{450}\right) \end{aligned}$	dM1 - attempt to find constants A1ft - one constant correctly found, ft their integration and separation of variables	M1 A1
	$x=450 e^{\frac{1}{4} \ln \left(\frac{2103}{450}\right) \times 7}=6684.35$	M1 - substitutes 7 into their solution to the DE	M1
	There will be about 6680 strands of bacteria in the culture after one week.	A1 - correct answer given in context	A1 (8)
(b)	B1 - number of bacteria, x, on vertical axis, time, t, on horizontal axis B1 - correct shape (showing exponential growth) B1 - the curve starts from 450 on the vertical axis. Award B1 B1 B0 for graphs that show negative time		B1 B1 B1 (3)
		Total	11

Notes on alternative methods:

This mark scheme may feature some alternative solutions, but, of course, at this level, there is likely to be questions that have many others. Where alternative methods are used, you should award full marks if the method is correct (do not award full marks for methods that coincidentally lead to the right answer). If the method is not correct, then you should aim to mark it by being as faithful to the original scheme as you can and ensure that you award the same amount of marks for the same amount of progress in a question as you would award using the general scheme.

