mark scheme

Practice Paper A : Core Mathematics 4

Question	General Scheme		Marks
Number			
1		T	<u> </u>
I	$x^{3}-2x^{2}-5x+6=(x-1)(x+2)(x-3)$	M1 – a fully correct method to factorise the cubic (i.e. use of the factor theorem, long division etc).	M1
		A1 – correct factorisation	A1
	Let		
	$\frac{2(x+2)}{(x-1)(x+2)(x-3)} = \frac{2}{(x-1)(x-3)} = \frac{A}{x-1}$	$\frac{1}{-1} + \frac{B}{x-3}$	
	$\therefore 2 = A(x-3) + B(x-1)$		
	B1 – simplifies the fraction by cancelling the common factor of $x + 2$ M1 – correct method to separate the fraction into its parts		B1 M1
	Let $x = 3: 2 = 2B \rightarrow B = 1$	dM1 – correct attempt to find the	M1
	Let $x = 1: 2 = -2A \rightarrow A = -1$	values of A and B A1 – one value correct	A1
	$\therefore \frac{2x+4}{(x-1)(x+2)(x-3)} = \frac{1}{x-3} - \frac{1}{x-1}$	A1 - cao, answers <u>must</u> be stated in this form at the end, otherwise award A0	A1
		Total	7
Note	Some candidates may not cancel the $x + 2$, but apply partial fractions to get		
		C	
	$\frac{2x+4}{(x-1)(x+2)(x-3)} = \frac{A}{x-1} + \frac{B}{x}$	$\frac{1}{2} + \frac{C}{m+2}$	
	(x-1)(x+2)(x-3) $x-1$ $x-1In this case B1 becomes the third A1 which you should aw$	3 x + 2	△ in
	addition to $C = 0$.		5 111

2 (a)	$f(x) = (4+x)^{-\frac{1}{2}} = \frac{1}{2} \left(1 + \frac{1}{4}x\right)^{-\frac{1}{2}}$	B1 – correct expression for $f(x)$	B1
	$f(x) \simeq \frac{1}{2} \left[\underbrace{1 + \left(-\frac{1}{2}\right)\left(\frac{1}{4}x\right)}_{\text{B1}} + \underbrace{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(\frac{1}{2!}\right)}_{\text{MI A1}} \right]$	$\left(\frac{1}{4}x\right)^2 + \dots \right]$	
	B1 – correct first two terms of the expansion		B1
	M1 – third term of the form $\frac{n(n-1)}{2!}x^2$, condone one slip A1 – third term correctly expressed (need not be simplified	l for this mark)	M1 A1
	$f(x) = \frac{1}{2} - \frac{1}{16}x + \frac{3}{256}x^2 + \dots$	A1 – cao, expansion fully simplified	A1 (5)
(b)	$4 + x = 7 \rightarrow x = 3$	B1 – correct value of x	B1
	$\frac{\sqrt{7}}{7} = \frac{1}{2} - \frac{1}{16}(3) + \frac{3}{256}(3)^2 + \dots$	M1 – substitutes 3 into their expansion	M1
	$\sqrt{7} = 2.9257$	A1ft – correct estimate of $\sqrt{7}$ using <i>their</i> expansion	A1 (3)
(c)	(It is correct to) one significant figure	B1 – cao, no ft	B1 (1)
		Total	9

3 (a)	$\int_{0}^{\frac{\pi}{4}} \tan x dx = \left[-\ln \cos x \right]_{0}^{\frac{\pi}{4}}$	B1 – correct integral	B1
	$= -\ln\left \cos\frac{\pi}{4}\right \ln\left \cos 0\right $	M1 – substitutes limits the right way round	M1
	$= \ln\left(\frac{\sqrt{2}}{2}\right)^{-1} = \ln\left(\frac{2}{\sqrt{2}}\right) = \ln\left(\sqrt{2}\right)$	M1 – uses the rule that $-\ln x = \ln\left(\frac{1}{x}\right)$	M1
		A1 – cao AG	A1 (4)
(b)	$x = \sin u \rightarrow dx = \cos u du$		
	$\therefore \int_{0}^{\frac{\sqrt{2}}{2}} \frac{5x}{2-2x^2} = \frac{5}{2} \int_{0}^{\frac{\pi}{4}} \frac{\sin u}{\cos^2 u} (\cos u) du = \frac{5}{2} \int_{0}^{\frac{\pi}{4}} \tan u du$	M1 – substitutes sin <i>u</i> in replace of <i>x</i> B1 – correct limits A1 – integral becomes $\frac{\pi}{4}$ $k \int_{0}^{\frac{\pi}{4}} \tan u du$	M1 B1 A1
	$=\frac{5}{2}\ln\left(\sqrt{2}\right)$	A1 – cao	A1 (4)
		Total	8

4			
(a)	Let $y = a^x$		
	$\ln y = x \ln a$	M1 – use of logarithims	M1
	Differentiate wrt $x : \frac{1}{y} \frac{dy}{dx} = \ln a$	A1 – correct implicit differentiation	A1
	$\frac{dy}{dx} = y \ln a = a^x \ln a$	A1 - cso AG	A1
			(3)
(b)	$2^{x}\ln 2 - 4y\frac{dy}{dx} = x\frac{dy}{dx} + y$	B1 – correct differentiation on LHS M1 – application of the product rule on	B1 M1
	$(x+4y)\frac{dy}{dx} = 2^x \ln 2 - y$	$\frac{M1}{dx} = rearranges for$	M1
	$\frac{dy}{dx} = \frac{2^x \ln 2 - y}{x + 4y}$	A1 – correct differentiation OE	A1
			(4)
		Total	7

5 (a)	$\sin 3t = 0 \to t = 0, \frac{\pi}{3}, \dots$	B1 – correct parameters	B1
	$y = \frac{2}{2 - \cos 3t}$ $\therefore y = \frac{2}{2 - \cos 0}, \frac{2}{2 - \cos \pi}$	M1 – rearranges for y and substitutes <i>their</i> parameters to find A and B	M1
	$A(0,2), B\left(0,\frac{2}{3}\right)$	A1 – cao	A1 (3)
(b)	$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$	M1 – this principle used or attempted at any point in the question	M1
	$\frac{dy}{dx} = \frac{-2(3\sin 3t)}{(2-\cos 3t)^2} \times \frac{1}{3\cos 3t}$	M1 – use of the quotient rule to find $\frac{dy}{dt}$	M1
		B1 – correct $\frac{dt}{dx}$	B1
	$\frac{dy}{dx} = \frac{-2(3\sin 3t)}{(2-\cos 3t)^2} \times \frac{\tan 3t}{3\cos 3t}$	M1 – attempts to simplify answer into required form using $\frac{\sin x}{\cos x} = \tan x$	M1
	$\frac{dy}{dx} = -\frac{2\tan 3t}{\left(2 - \cos 3t\right)^2}$	A1 – cao AG	A1 (5)
(c)	$x = \frac{\sqrt{3}}{2} \to t = \frac{\pi}{9}$	B1 – correct parameter	B1
	$\frac{dy}{dx}\Big _{t=\frac{\pi}{9}} = -\frac{2\tan\left(\frac{\pi}{3}\right)}{\left(2-\cos\left(\frac{\pi}{3}\right)\right)^2}$	M1 – substitutes <i>their</i> parameter into $\frac{dy}{dx}$	M1
	$= -\frac{2\sqrt{3}}{\frac{9}{4}} = -\frac{8\sqrt{3}}{9}$	$A1\frac{8\sqrt{3}}{2}$	A1
	$y - \frac{4}{3} = -\frac{8\sqrt{3}}{9} \left(x - \frac{\sqrt{3}}{2} \right)$	A1ft – equation of tangent OE	M1 (4)

(d)	$y - \frac{4}{3} = \frac{8\sqrt{3}}{9} \left(x + \frac{\sqrt{3}}{2} \right)$	B1 – cao	B1 (1)
(e)	$P(\sqrt{3},0)$, $Q(-\sqrt{3},0)$	B2 – coordinates of P and Q (B1 for each one)	B2
	$AP = \sqrt{\left(\sqrt{3}\right)^2 + 2^2} = \sqrt{7}$	M1 – use of Pythagoras to work out AP or AQ	M1
	$AQ = \sqrt{\left(-\sqrt{3}\right)^2 + 2^2} = \sqrt{7}$		
	$\therefore AP = AQ$	A1 – correctly shows that $AP = AQ = \sqrt{7}$	A1 (4)
		Total	17

6	$6 + 4\mu = 5 \rightarrow \mu = -\frac{1}{4}$	B1 – correct μ	B1
	$1 + \left(-\frac{1}{4}\right)a = \frac{3}{4}$	M1 – attempt to find a	M1
	<i>a</i> = 1	A1 – correct <i>a</i>	A1
	$a + \lambda = \frac{3}{4} \rightarrow \lambda = -\frac{1}{4}$	M1 – attempts to find λ or 9λ	M1
	$\therefore 3 - \frac{b}{4} = -\frac{11}{4}$	M1 – attempts to find <i>b</i>	M1
	$\frac{b}{4} = \frac{23}{4}$		
	<i>b</i> = 23	A1 – correct <i>b</i>	A1
		Total	6

7 (a)	$y = \frac{9\sqrt{2}}{4\pi} \left(\frac{\pi}{6}\right) = \frac{3\sqrt{2}}{8} \text{ M1}$	M1 – attempts to show that the coordinates satisfy one equation	M1
	$y = \cos^2\left(\frac{\pi}{6}\right)\sqrt{\sin\left(\frac{\pi}{6}\right)} = \frac{3}{4} \times \frac{1}{\sqrt{2}} = \frac{3\sqrt{2}}{8}$	A1 – shows <i>thoroughly</i> that the coordinates satisfy both equations	A1 (2)
(b)	$\pi \int_{0}^{\frac{\pi}{6}} \left(\cos^{2} x \sqrt{\sin x}\right)^{2} dx = \pi \int_{0}^{\frac{\pi}{6}} \cos^{4} x \sin x dx$	B1 – use of $\pi \int_{a}^{b} y^{2} dx$, with <i>a</i> and <i>b</i> correct	B1
	$=\pi\left[-\frac{\cos^5 x}{5}\right]_0^{\frac{\pi}{6}}$	$\mathbf{M1} - \frac{k\cos^5 x}{5}$ seen A1 - correct	M1
	$=\pi\left[-\frac{9\sqrt{3}}{5}-\frac{1}{5}\right]$	integration dM1 – substitutes <i>their</i> limits the right way around	AI M1
	$=\frac{\pi\left(1-9\sqrt{3}\right)}{5}$	A1ft – correct value for the volume of revolution of the curve	A1
	Volume of revolution of line $=\frac{1}{3}\pi \left(\frac{3\sqrt{2}}{4}\right)^2 \left(\frac{\pi}{6}\right) = \frac{\pi^2}{16}$	B1 – correct value for volume of the revolved line	B1
	Volume of revolved shaded region = $\frac{\pi (1 - 9\sqrt{3})}{5} - \frac{\pi^2}{16}$	ddM1 – <i>their</i> volume of revolved curve – <i>their</i> volume of revolved line A1 – cao oe	M1
		Total	(8) 10

8 (a)	$\frac{dx}{dt} = kx$	B1 – forms a differential equation of the correct form	B1
	$\frac{1}{x}\frac{dx}{dt} = k$	M1 – method to separate the variables	M1
	$\int \frac{1}{x} \frac{dx}{dt} dt = \int k \ dt$		
	$\int \frac{1}{x} dx = \int k dt$	A1 – variables correctly separated	A1
	$\ln x = kt + c$	A1 – correct integration <u>including</u> <u>constant</u>	A1
	$x = e^{kt+c} = Ae^{kt}$ $450 = Ae^{k(0)} \rightarrow A = 450$	dM1 – attempt to find constants	M1
	$2103 = 450e^{k(4)}$		
	$k = \frac{1}{4} \ln\left(\frac{2103}{450}\right)$	A1ft – one constant correctly found, ft <i>their</i> integration and separation of variables	A1
	$x = 450e^{\frac{1}{4}\ln\left(\frac{2103}{450}\right) \times 7} = 6684.35$	M1 – substitutes 7 into <i>their</i> solution to the DE	M1
	There will be about 6680 strands of bacteria in the culture after one week.	A1 – correct answer given in context	A1 (8)
(b)	B1 – number of bacteria, x , on vertical axis, time, t , on horizontal axis B1 – correct shape (showing exponential growth) B1 – the curve starts from 450 on the vertical axis.		B1 B1 B1
	Award B1 B1 B0 for graphs that show negative time		(2)
		Total	11

Notes on alternative methods:

This mark scheme may feature some alternative solutions, but, of course, at this level, there is likely to be questions that have many others. Where alternative methods are used, you should award full marks **if the method is correct** (do **not** award full marks for methods that coincidentally lead to the right answer). If the method is *not* correct, then you should aim to mark it by being as faithful to the original scheme as you can and ensure that you award the same amount of marks for the same amount of *progress* in a question as you would award using the general scheme.