	EX	XAMINATION PAPER 1	Matching the syllabus written by	
		Calculators Allowed	EDEXCEL Curriculum 2004+	
	Where ap	ppropriate, give your answers to 3 s.f.		_
	C	DigZag Education 2004	Core Mathematics – C3	_
		Time Allow	ed:-1 hour 30 minutes	
1.	Express th	the following expression as a single fr x+1	action in its simplest form: 6	[4]
		$\overline{(x-1)(x+2)} - \overline{(x-1)(x+2)} = \overline{(x-1)(x+2)}$	(-1)(x+3)	[4]
2	$\overline{f(\mathbf{r})} = \mathbf{r}^4 -$	r – 1		
2.	f(x) = 0 ha	as a solution such that $n < x < n + 1$ w	where n is a positive integer.	
	a) i)	Find a positive value of n such that	at the inequality is true.	[3]
	ii)	Construct a simple logical argume	ent to <i>prove</i> that such a solution exists.	[3]
	b) Usin	ng an iteration based on the equation	$f(x) = \sqrt[4]{1+x}$, find a solution to $f(x) = 0$ to 3 decimal place	:es.[4]
3.	$\overline{\mathbf{f}(x)} = (x - \mathbf{f}(x))$	$(3)^2 + 4$		
	a) Cal	culate the equation of the function g	(x) where $g(x) = 1 + f(x + 1)$	[2]
	There is a	relationship between the graphs of y	y = f(x) and $y = g(x)$.	[9]
	b) 1) ii)	Clearly define the transformation	that takes the graph of $f(x)$ to $g(x)$.	[3] [1]
	h(x) = x	-2 - 3	that takes the graph of $g(x)$ to $f(x)$.	[*]
	c) Solv	ve the equation $h(x) = 1$		[3]
	d) Find	d = fh(-3)		[3]
4.	Given that	$t 2\cos 3x \cos x = \cos 2C + \cos C$		[2]
	b) Let	x be 15° and hence, or otherwise find	d an <i>exact value</i> for cos 15°. Leave your answer in <i>sura</i>	l 4] l form
	and	rationalise the denominator if neces	ssary.	[4]
	c) Hen	nce or otherwise solve the equation 2	$\cos 3x \cos x = 1$ for $0 < x \le 180^{\circ}$.	
	Give	e your answers to 1 decimal place.		[6]
5.	$\overline{\mathbf{f}(x)=x^3,\mathbf{g}}$	g(x) = 4x - 2		
	a) Find	d fg(x), gf(x)		[2]
	b) Ske	tch the graph of $y = g(\sin x)$ and sta	te the coordinates of the minimum point of the	[4]
	gra	on within the range $0 < x \le 2\pi$ radian	15.	[4]
	$h(x) = \frac{x+x}{x+x}$	$\frac{-1}{-1}$ where x is real and $x \neq 1$		
	<i>x</i> –	-1		
	c) Fine	d $h^{-1}(x)$ and state its domain and range	ge.	[5]
C	$\mathbf{f}(\mathbf{x}) = \mathbf{x} \mathbf{x}$			
6.	$f(x) = \cos x + 2\sin x$			
	b) Solv	we the equation $\cos x + 2\sin x = 1$ wh	here $0 \le \alpha < 360^\circ$	[4]
	c) For	what values of r is $\frac{6}{2}$	- a maximum where $0 < r < 360^{\circ}$?	[3]
	c) 101	what values of x is $6 + \cos x + 2\sin x$	x	
	d) What	at is the value of this maximum?		[1]
7		dy dy dy dy dy dy dy dy	2	[2]
1.	a) Find	$d - \frac{d}{dx}$ when $x = 6$ and $y > 0$ and $x = y$	y = y.	[၁]
	b) i)	Find the equation of the tangent to	to the curve $y = \sin 3x \cos 6x$ when $x = \frac{\pi}{3}$ radians.	[5]
	ii)	Find the equation of the tangent to	to the curve $y = \sin 3x \cos 6x$ when $x = \frac{\pi}{6}$ radians.	[3]
	iii)	Find the equation of the normal to	the curve $y = \sin 3x \cos 6x$ when $x = \frac{\pi}{2}$ radians.	[1]
	,	*	© Science Evam Danars	
			Solence Litan rapers)

[75]

	EXAMINATION PAPER 2	Matching the syllabus written by	
W	Calculators Allowed	EDEXCEL Curriculum 2004+	
~~~	© ZigZag Education 2004	Core Mathematics – C3	
	Time Allow	ed:-1 hour 30 minutes	
I. Sol	we the simultaneous equations, $e^{3x} = ey$	and $\ln y = 6x - 2$ where e is the exponential consta	int. <b>[6]</b>
2. a)	Simplify the expression: $\frac{\tan\phi}{\tan\phi + \cot\phi}$		[4]
b)	Hence or otherwise simplify the exp	The residual tension: $\frac{\tan^2 \phi}{2 + \tan^2 \phi + \cot^2 \phi}$	[2]
	3e ^x		
a) b)	Sketch this curve, stating where the c Find the equation of the normal to th	curve crosses the y-axis. e curve at the point (ln3, 9)	[2] [5]
4. Ske a)	etch separately the graphs of $f( x )$	f(x)	[2] [3]
In e cro	each sketch clearly show where the grap sses or touches the x-axis and y-axis. State the relationship	oh 1	[5]
C)	between $f(x)$ and $ f(x) $ .	2 3 x	[1]
5. Dif	ferentiate the following expressions wit	h respect to x:	
a)	$2x \cos x$ 1+ $x^3$		[4]
b)	$e^{3x}$		[4]
c)	$\ln(x^x)$		[4]
$\mathbf{f}(\mathbf{x})$	$= 2 + \ln x$ for $x > 0$ with $x\varepsilon_i$ and g(	$x = 2 + e^{2x}$ with $x \varepsilon_{1}$ .	(7)
a) b)	Find $fg(x)$ and $gf(x)$ simplifying your Find $f^{-1}(x)$ and state its range	answers where possible.	[5] [4]
c)	Find $g^{-1}(x)$ and state its domain.		[4]
f(x)	$= \sin 3x$ for $x\varepsilon_1$ and $g(x) = \sin x \cos x$	$x \ 0 \le x \le \pi/2 \text{ for } x\varepsilon_1$	
a)	Show using trigonometric identities	that $f(x + \pi/6) = -f(x - \pi/6)$	[7]
b)	Show that $g(x)$ is an increasing funct	ion for $0 < x < \pi/4$	[4]
3. a)	Show that $10x^3 = \frac{1}{1-x}$ has 2 solution	ns between 0 and 0.9.	
	State the range that each solution mu	st lie in.	[5]
b)	Use the iteration $x_{n+1} = \sqrt[3]{\frac{1}{10-10x_n}}$ a	nd $x_0 = 0.7$ to find $x_1, x_2, x_3$ , and $x_4$ .	
	Give your answers to four decimal p	laces where appropriate.	[4]
c)	Find f(0.675) where $f(x) = 10x^3 - \frac{1}{1-x^3}$	-x. Give your answer to 3 significant figures	[2]
d)	Hence using your results from b) and	l c) find a solution to the equation in a) to 2 decima © Science Exam Papers	al <b>5</b>

	<b>EXAMINATION PAPER 3</b>	Matching the syllabus written by	
	Calculators Allowed	EDEXCEL Curriculum 2004+	
Wh	here appropriate, give your answers to 3 s.f.		
	© ZigZag Education 2004	Core Mathematics – C3	
	Time Allowe	ed:-1 hour 30 minutes	
$Solve{10x}$	we the following equation, leaving your $-2e^{5x} - 3 = 0$	answer exactly:	
C	[5]		
a)	Finding A and B; write 2sin 6x cos5x	$c$ in the form $\sin Ax + \sin Bx$	
b)	Show that: $\frac{\cot 2\phi \csc 2\phi}{\tan^2 \phi \sec 2\phi + \sec 2\phi} \equiv (\cos \theta)$	$(\phi \cot 2\phi)^n$ and find n.	
y =	$3-2e^x$		
a) b)	Sketch this curve, stating where the c Find the equation of the normal to th	curve crosses the x-axis and y -axis e curve at the point $(1, 3 - 2e)$	
$\overline{f(x)}$	$= x^6 - x^2 - 1$ = 0 has a solution such that $n < x < n + 1$	- 1 where n is a negitive integer	
r(x)	Find a positive value of n such that the	he inequality is true	
u) h)	Using an iteration based on the equat	tion $r = \sqrt[6]{1 + r^2}$ find a solution to $f(r) = 0$ to 3 d	ecim
0)	nlaces	$\frac{1}{1} = \frac{1}{1} + \frac{1}{2} + \frac{1}$	cenn
c)	Calculate $f(-x)$ and hence find a second	ond estimated solution of $f(x) = 0$	
f(x)	$=\frac{x+16}{x-16}$ where x is real and $x \neq 16$ and	$d g(x) = x^4$	
a) b)	Find $fg(x)$ and $gf(x)$ and state their do Find $f^{-1}(x)$ and state its domain.	omains.	
Ske	tch separately the following graphs:	¢У	
a)	$\mathbf{y} =  \mathbf{f}(\mathbf{x}) $	-	
b)	y = f( x )	4	
c) Writ	y = 2f(3x) te down where each graph crosses the <i>x</i> an	d y-axis.	
d)	State the relationship between the gradest	aphs y = $2f(3x)$ and y = $-2f(3x)$ .	
Diff	Ferentiate the following expressions with	th respect to x:	
a)	$\sin^3 2x \cos^4 3x$	-	
b)	$\frac{e^{3x}}{x^5}$		
c)	Given that $x = \sin 5y$ , prove that $\frac{dy}{dx} = \frac{dy}{dx}$	$=\frac{1}{5\sqrt{1-x^2}}$	
a)	Express $6\cos x + 8\sin x$ in the form R	$\cos(x^{\circ} - \alpha^{\circ})$ where $0 < \alpha < 90^{\circ}$ .	<u></u>
	Give $\alpha$ to two decimal places.		

b) Solve to 2 decimal places the equation  $6\cos 2y + 8\sin 2y = 1$  where  $0 < y < 360^{\circ}$ . [6]

© Science Exam Papers

		[75]
d)	What is the value of this minimum?	[2]
	Give your answer to two decimal places.	[3]
c)	For what values of x is $\frac{10}{10+6\cos x+8\sin x}$ a minimum, where $0 < x < 360^{\circ}$ ?	

	EXAMINATION PAPER 4	Matching the syllabus written by	
	Calculators Allowed	EDEXCEL Curriculum 2004+	
Wh	ere appropriate, give your answers to 3 s.f.	Coro Mathematics C3	
	© ZigZag Education 2004	ed: 1 hour 30 minutes	
a)	Simplify the expression: $1 + \frac{3x+2}{3x^2 - x - 2}$		[4
b)	$f(x) = x^3 + \frac{23}{2}x^2 + 26x - 16$		
	Show that $f(x) = 0$ has a solution between	n 0 and 1.	[3
f(x) s The § Sketa	shown, has a maximum value of 4. graph cuts the <i>x</i> -axis at 1 and 5 and cuts th ch separately the following graphs:	e y-axis at $-2$ . y = 4 f(x)	
a)	f(x)		[2
b)	f( x )	1	[2
c)	2f(x+1)		[3
a)	Sketch the curve $y = 3 + 2\ln x$ and state y	where the curve crosses the <i>x</i> -axis.	[3
b)	Find the equation of the tangent to the cu	urve at the point (1, 3)	[4
a) b)	Find the value of T at the beginning and exactly and if necessary in terms of e, the i) Find $\frac{dT}{dt}$	end of the air blast giving your answers e exponential constant.	[3 [1
c)	<ul> <li>i) Frence find when the fron bar is coloring</li> <li>i) State the maximum rate of cooling</li> <li>ii) State the minimum rate of cooling</li> </ul>	g and at what time this occurs. g and at what time this occurs.	[3 [2 [2
f(x) =	$= \frac{x^2 - 49}{x + 7}$ where x is real and $x \neq -7$ and g	$f(x) = x^2 - 2$ where x is real.	
a)	Show that $fg(x)$ can be written in the form	m $(x + A)(x - A)$ and find A.	[4
b)	Show that $gf(x)$ can be written in the form	m $\frac{h(x)}{(x+7)^2}$ and find h(x).	[4
The c	domain of $g(x)$ is now restricted such that .	x > 5.	
c) d)	State the range of $g(x)$ . Find $g^{-1}(x)$ and state its domain and rang	ge.	[1 [4
a)	Expand and simplify the expression $(\sqrt{1})$	$\overline{1} + \sqrt{10} \left( \sqrt{11} - \sqrt{10} \right)$	[1
b)	Express $\cos x + 3\sin x$ in the form Rcos(	$x^{\circ} - \alpha^{\circ}$ ) where $0 < \alpha \le 90^{\circ}$	[4
c)	Solve the equation $\cos x + 3\sin x = 1$ wh	ere $0 < x \le 360^\circ$	
1	* 1	•••••••••••••••••••••••••••••••••••••••	[4
d)	For what values of x is $\frac{1}{\cos x + 3\sin x + \sqrt{11}}$	a minimum, where $0 < x \le 360^{\circ}$ ?	[4 [2
d) e)	For what values of x is $\frac{1}{\cos x + 3\sin x + \sqrt{11}}$ a Leaving your answer exactly, calculate t	a minimum, where $0 \le x \le 360^{\circ}$ ? his minimum value.	[4 [2 [3
d) e) a)	For what values of x is $\frac{1}{\cos x + 3\sin x + \sqrt{11}}$ a Leaving your answer exactly, calculate t Using the identity for sin (A + B), prove	the identity $\sin 3x \equiv 3\sin x - 4\sin^3 x$	[4 [2 [3 [5
d) e) a) b)	For what values of x is $\frac{1}{\cos x + 3\sin x + \sqrt{11}}$ a Leaving your answer exactly, calculate t Using the identity for sin (A + B), prove Using the fact that $\frac{d}{dx}(\sin x) = \cos x$ , prove	the identity $\sin 3x \equiv 3\sin x - 4\sin^3 x$ ove that $\frac{d}{dx}(\sin ax) = a\cos ax$	[4 [2 [3 [5 [5
<ul> <li>d)</li> <li>e)</li> <li>a)</li> <li>b)</li> <li>c)</li> </ul>	For what values of x is $\frac{1}{\cos x + 3\sin x + \sqrt{11}}$ a Leaving your answer exactly, calculate t Using the identity for sin (A + B), prove Using the fact that $\frac{d}{dx}(\sin x) = \cos x$ , pro-	the identity $\sin 3x \equiv 3\sin x - 4\sin^3 x$ by that $\frac{d}{dx}(\sin ax) = a\cos ax$ ity in a) find an expression equivalent	[4 [2 [3 [5 [5

[75]

[3]

	<b>EXAMINATION PAPER 5</b>	Matching the syllabus written by	
	Calculators Allowed	EDEXCEL Curriculum 2004+	
W	here appropriate, give your answers to 3 s.f.		
	© ZigZag Education 2004	Core Mathematics – C3	ĺ
	Time Allowe	ed:-1 hour 30 minutes	
a) b)	Simplify the expression: $1 - \frac{1}{1 + \cot^2 \phi}$ Show that : $\cos \phi + \sin \phi \tan 2\phi = \frac{\cos \phi}{\cos 2\phi}$	[	[3] [4]
f(x	$)=x^{3}-2x-3$		

The root  $\alpha$  to the equation f(x) = 0 can be estimated using the iterative formula  $x_{n+1} = \sqrt{\frac{3}{x_n} + 2}$  with  $x_0 = 2$ . a) Calculate  $x_1, x_2, x_3$  and  $x_4$  giving your answers to 4 significant figures. [3] b) Prove that, to 4 significant figures,  $\alpha$  is 1.893. [3] John found this iterative formula. He found it by first writing  $x^3 - 2x - 3$  in the form  $x(x^2 - 2) - 3$ . c) Continue the likely algebraic steps that John may have taken to come across this iterative formula.[3]

a) Solve the inequality |2x+3| > 4 [3] b) i) Sketch a graph of y = |(x-1)(x-3)| [2] The coordinates on the graph where the gradient is 1 is (a, b) where 1 < a < 3. ii) Find the value of a. [4]

y

2

[2]

[2]

[3]

f(x)

4. Sketch separately the following graphs:

a) f(|x|)

1.

2.

3.

- b) | f(x) |
- c) 3f(2x)

In each case write on where each graph crosses or touches the *x* and *y*-axis.

d)	Given that the curved part of the graph $y = f(x)$ is given by $f(x) = k - 3e^{x+2}$ , $x \le -1$ ,	
	find the value of k exactly.	[2]
e)	Find the gradient of the steepest part of the curved part of the graph.	[3]

5. 
$$f(x) = x^2 - 1$$
 with  $x\varepsilon_i$  and  $g(x) = 1 - x^2$  with  $x\varepsilon_i$   
a) Find  $fg(x)$  and  $gf(x)$  and solve the equation  $fg(x) = gf(x)$  [8]

For the inverse of f(x) to exist, it is necessary for the domain of f(x) to be restricted. The domain of the f(x) is now restricted such that  $x \ge r$ .

- b) State the largest possible domain of f(x) such that the inverse of f(x) exists. [2]
- c) Assuming the domain of f(x) is appropriately restricted, then find the inverse of f(x). [4]

6. $f(x) = \ln x$  and  $g(x) = \ln 2x$ [2]a)Find f'(x) and g'(x)[3]b)Hence find the tangent to the curve y = f(x) when x = 3.[3]c)Find the normal to the curve y = g(x) when x = 3.[4]

7. a) Using a trigonometric identity, simplify the expression:  $\sin 2x \cos 4x + \cos 2x \sin 4x$  [2] b) Using your answer to part a) and the identity  $\sin 2x \cos 4x = \frac{1}{2}[\sin 6x - \sin 2x]$  [2] prove that  $2\sin 2x \cos 4x + \cos 2x \sin 4x = \frac{1}{2}[3\sin 6x - \sin 2x]$  [2] **C** Science Exam Papers c) Show that the curve  $y = e^{-x} \cos x$  has 2 stationary points between  $0 < x < 2\pi$  and with clear working distinguish if these points are maximum or minimum points.

[11]

[75]