EXAMINATION PAPER 1	Matching the syllabus written by EDEXCEL Curriculum 2004+
Calculators Allowed Where appropriate, give your answers to 3 s.f.	
© ZigZag Education 2004	Core Mathematics - C3
Time Allowed:-1 hour 30 minutes	

1. Express the following expression as a single fraction in its simplest form:

$$
\begin{equation*}
\frac{x+1}{(x-1)(x+2)}-\frac{6}{(x-1)(x+3)} \tag{4}
\end{equation*}
$$

2. $\mathrm{f}(x)=x^{4}-x-1$
$\mathrm{f}(x)=0$ has a solution such that $\mathrm{n}<x<\mathrm{n}+1$ where n is a positive integer.
a) i) Find a positive value of n such that the inequality is true.
ii) Construct a simple logical argument to prove that such a solution exists.
b) Using an iteration based on the equation $x=\sqrt[4]{1+x}$, find a solution to $\mathrm{f}(x)=0$ to 3 decimal places.[4]
3. $\mathrm{f}(x)=(x-3)^{2}+4$
a) Calculate the equation of the function $\mathrm{g}(x)$ where $\mathrm{g}(x)=1+\mathrm{f}(x+1)$

There is a relationship between the graphs of $\mathrm{y}=\mathrm{f}(x)$ and $\mathrm{y}=\mathrm{g}(x)$.
b) i) Clearly define the transformation that takes the graph of $\mathrm{f}(x)$ to $\mathrm{g}(x)$.
ii) Clearly define the transformation that takes the graph of $g(x)$ to $f(x)$.
$h(x)=|x+2|-3$
c) Solve the equation $\mathrm{h}(x)=1$
d) Find $\mathrm{fh}(-3)$
4. Given that $2 \cos 3 x \cos x=\cos 2 C+\cos C$
a) Find C in terms of x.
b) Let x be 15° and hence, or otherwise find an exact value for $\cos 15^{\circ}$. Leave your answer in surd form and rationalise the denominator if necessary.
c) Hence or otherwise solve the equation $2 \cos 3 x \cos x=1$ for $0<x \leq 180^{\circ}$.

Give your answers to 1 decimal place.
5. $\mathrm{f}(x)=x^{3}, \mathrm{~g}(x)=4 x-2$
a) Find $\operatorname{fg}(x), \operatorname{gf}(x)$
b) Sketch the graph of $y=g(\sin x)$ and state the coordinates of the minimum point of the graph within the range $0<x \leq 2 \pi$ radians.
$\mathrm{h}(x)=\frac{x+1}{x-1}$ where x is real and $x \neq 1$
c) Find $\mathrm{h}^{-1}(x)$ and state its domain and range.
6. $\mathrm{f}(x)=\cos x+2 \sin x$
a) Express $\mathrm{f}(x)$ in the form $\mathrm{R} \cos \left(x^{\circ}-\alpha^{\circ}\right)$ where $0 \leq \alpha<90^{\circ}$
b) Solve the equation $\cos x+2 \sin x=1$ where $0 \leq x<360^{\circ}$
c) For what values of x is $\frac{6}{6+\cos x+2 \sin x}$ a maximum, where $0<x<360^{\circ}$?
d) What is the value of this maximum?
7. a) Find $\frac{d y}{d x}$ when $x=6$ and $y>0$ and $x=y^{2}-y$.
b) i) Find the equation of the tangent to the curve $y=\sin 3 x \cos 6 x$ when $x=\frac{\pi}{3}$ radians.
ii) Find the equation of the tangent to the curve $y=\sin 3 x \cos 6 x$ when $x=\frac{\pi}{6}$ radians.
iii) Find the equation of the normal to the curve $y=\sin 3 x \cos 6 x$ when $x=\frac{\pi}{6}$ radians.

EXAMINATION PAPER 2	Matching the syllabus written by EDEXCEL Curriculum 2004+
Calculators Allowed Where appropriate, give your answers to 3 s.f.	
© ZigZag Education 2004	Core Mathematics - C3
Time Allowed:-1 hour 30 minutes	

1. Solve the simultaneous equations, $\mathrm{e}^{3 x}=$ ey and $\ln y=6 x-2$ where e is the exponential constant. [6]
2. a) Simplify the expression: $\frac{\tan \phi}{\tan \phi+\cot \phi}$
b) Hence or otherwise simplify the expression: $\frac{\tan ^{2} \phi}{2+\tan ^{2} \phi+\cot ^{2} \phi}$
3. $y=3 e^{x}$
a) Sketch this curve, stating where the curve crosses the y-axis.
b) Find the equation of the normal to the curve at the point $(\ln 3,9)$
4. Sketch separately the graphs of-
a) $\mathrm{f}(|x|)$
b) $2 \mathrm{f}(x+1)$

In each sketch clearly show where the graph crosses or touches the x-axis and y-axis.
c) State the relationship between $\mathrm{f}(x)$ and $|\mathrm{f}(x)|$.

5. Differentiate the following expressions with respect to x :
a) $2 x^{4} \cos ^{4} x$
b) $\frac{1+x^{3}}{e^{3 x}}$
c) $\quad \ln \left(x^{x}\right)$
6. $\mathrm{f}(x)=2+\ln x$ for $x>0$ with $x \varepsilon_{\mathrm{i}} \quad$ and $\mathrm{g}(x)=2+\mathrm{e}^{2 x}$ with $x \varepsilon_{\mathrm{i}}$.
a) Find $\mathrm{fg}(x)$ and $\operatorname{gf}(x)$ simplifying your answers where possible.
b) Find $\mathrm{f}^{-1}(x)$ and state its range.
c) Find $\mathrm{g}^{-1}(x)$ and state its domain.
7. $\mathrm{f}(x)=\sin 3 x$ for $x \varepsilon_{\mathrm{i}} \quad$ and $\mathrm{g}(x)=\sin x \cos x \quad 0 \leq x \leq \pi / 2$ for $x \varepsilon_{\text {; }}$
a) Show using trigonometric identities that $\mathrm{f}(x+\pi / 6)=-\mathrm{f}(x-\pi / 6)$
b) Show that $\mathrm{g}(x)$ is an increasing function for $0<x<\pi / 4$
8. a) Show that $10 x^{3}=\frac{1}{1-x}$ has 2 solutions between 0 and 0.9 . State the range that each solution must lie in.
b) Use the iteration $x_{\mathrm{n}+1}=\sqrt[3]{\frac{1}{10-10 x_{n}}}$ and $x_{0}=0.7$ to find x_{1}, x_{2}, x_{3}, and x_{4}.

Give your answers to four decimal places where appropriate.
c) Find $\mathrm{f}(0.675)$ where $\mathrm{f}(x)=10 x^{3}-\frac{1}{1-x}$. Give your answer to 3 significant figures
d) Hence using your results from b) and c) find a solution to the equation in a) to 2 decimal

EXAMINATION PAPER 3	Matching the syllabus written by EDEXCEL Curriculum 2004+
Calculators Allowed Where appropriate, give your answers to 3 s.f.	
\propto ZigZag Education 2004	Core Mathematics - C3
Time Allowed:-1 hour 30 minutes	

1. Solve the following equation, leaving your answer exactly:

$$
e^{10 x}-2 e^{5 x}-3=0
$$

[5]
2. a) Finding A and B ; write $2 \sin 6 x \cos 5 x$ in the form $\sin \mathrm{A} x+\sin \mathrm{B} x$
b) Show that: $\frac{\cot 2 \phi \operatorname{cosec} 2 \phi}{\tan ^{2} \phi \sec 2 \phi+\sec 2 \phi} \equiv(\cos \phi \cot 2 \phi)^{n}$ and find n .
3. $y=3-2 e^{x}$
a) Sketch this curve, stating where the curve crosses the x-axis and y-axis
b) Find the equation of the normal to the curve at the point (1,3-2e)
4. $\mathrm{f}(x)=x^{6}-x^{2}-1$
$\mathrm{f}(x)=0$ has a solution such that $\mathrm{n}<x<\mathrm{n}+1$ where n is a positive integer.
a) Find a positive value of n such that the inequality is true.
b) Using an iteration based on the equation $x=\sqrt[6]{1+x^{2}}$, find a solution to $\mathrm{f}(x)=0$ to 3 decimal
c) Calculate $\mathrm{f}(-x)$ and hence find a second estimated solution of $\mathrm{f}(x)=0$
5. $\mathrm{f}(x)=\frac{x+16}{x-16}$ where x is real and $x \neq 16$ and $\mathrm{g}(x)=x^{4}$
a) Find $\operatorname{fg}(x)$ and $\operatorname{gf}(x)$ and state their domains.
b) Find $\mathrm{f}^{-1}(x)$ and state its domain.
6. Sketch separately the following graphs:
a) $\mathrm{y}=|\mathrm{f}(x)|$
b) $\quad \mathrm{y}=\mathrm{f}(|x|)$
c) $\mathrm{y}=2 \mathrm{f}(3 x)$

Write down where each graph crosses the x and y-axis.

d) State the relationship between the graphs $\mathrm{y}=2 \mathrm{f}(3 x)$ and $\mathrm{y}=-2 \mathrm{f}(3 x)$.
7. Differentiate the following expressions with respect to x :
a) $\sin ^{3} 2 x \cos ^{4} 3 x$
b) $\frac{e^{3 x}}{x^{5}}$
c) Given that $x=\sin 5 y$, prove that $\frac{d y}{d x}=\frac{1}{5 \sqrt{1-x^{2}}}$
8. a) Express $6 \cos x+8 \sin x$ in the form $\operatorname{Rcos}\left(x^{\circ}-\alpha^{\circ}\right)$ where $0<\alpha<90^{\circ}$.

Give α to two decimal places.
b) Solve to 2 decimal places the equation $6 \cos 2 y+8 \sin 2 y=1$ where $0<y<360^{\circ}$.
c) For what values of x is $\frac{10}{10+6 \cos x+8 \sin x}$ a minimum, where $0<x<360^{\circ}$? Give your answer to two decimal places.
d) What is the value of this minimum?

EXAMINATION PAPER 4	Matching the syllabus written by EDEXCEL Curriculum 2004+
Calculators Allowed Where appropriate, give your answers to 3 s.f.	
© ZigZag Education 2004	Core Mathematics - C3
Time Allowed:-1 hour 30 minutes	

1. a) Simplify the expression: $1+\frac{3 x+2}{3 x^{2}-x-2}$
b) $\mathrm{f}(x)=x^{3}+\frac{23}{2} x^{2}+26 x-16$

Show that $\mathrm{f}(x)=0$ has a solution between 0 and 1 .
2. $\quad \mathrm{f}(x)$ shown, has a maximum value of 4 .

The graph cuts the x-axis at 1 and 5 and cuts the y-axis at -2 . Sketch separately the following graphs:
a) $\quad|\mathrm{f}(x)|$
b) $\quad \mathrm{f}(|x|)$
c) $\quad 2 \mathrm{f}(x+1)$

3. a) Sketch the curve $\mathrm{y}=3+2 \ln x$ and state where the curve crosses the x-axis.
b) Find the equation of the tangent to the curve at the point $(1,3)$
4. The temperature of an iron ball is cooled by a 1 second blast of chilled nitrogen. The temperature of the iron ball, $\mathrm{T}^{\circ} \mathrm{C}$, is given by the equation $T=5\left(20-e^{t}\right)$, for $0<t \leq 1$ where t is time in seconds.
a) Find the value of T at the beginning and end of the air blast giving your answers exactly and if necessary in terms of e, the exponential constant.
b) i) Find $\frac{d T}{d t}$
ii) Hence find when the iron ball is cooling at a rate of $6^{\circ} \mathrm{C} / \mathrm{s}$ giving your answer exactly.
c) i) State the maximum rate of cooling and at what time this occurs.
ii) State the minimum rate of cooling and at what time this occurs.
5. $\mathrm{f}(x)=\frac{x^{2}-49}{x+7}$ where x is real and $x \neq-7$ and $\mathrm{g}(x)=x^{2}-2$ where x is real.
a) Show that $\mathrm{fg}(x)$ can be written in the form $(x+\mathrm{A})(x-\mathrm{A})$ and find A .
b) Show that $\operatorname{gf}(x)$ can be written in the form $\frac{h(x)}{(x+7)^{2}}$ and find $h(x)$.

The domain of $\mathrm{g}(x)$ is now restricted such that $x>5$.
c) State the range of $\mathrm{g}(x)$.
d) Find $\mathrm{g}^{-1}(x)$ and state its domain and range.
6. a) Expand and simplify the expression $(\sqrt{11}+\sqrt{10})(\sqrt{11}-\sqrt{10})$
b) Express $\cos x+3 \sin x$ in the form $R \cos \left(x^{\circ}-\alpha^{\circ}\right)$ where $0<\alpha \leq 90^{\circ}$
c) Solve the equation $\cos x+3 \sin x=1$ where $0<x \leq 360^{\circ}$
d) For what values of x is $\frac{1}{\cos x+3 \sin x+\sqrt{11}}$ a minimum, where $0<x \leq 360^{\circ}$?
e) Leaving your answer exactly, calculate this minimum value.
7. a) Using the identity for $\sin (A+B)$, prove the identity $\sin 3 x \equiv 3 \sin x-4 \sin ^{3} x$
b) Using the fact that $\frac{d}{d x}(\sin x)=\cos x$, prove that $\frac{d}{d x}(\sin a x)=a \cos a x$
c) By differentiating both sides of the identity in a) find an expression equivalent to $\cos (3 x)$ in terms of $\sin x$ and $\cos x$.

EXAMINATION PAPER 5	Matching the syllabus written by EDEXCEL Curriculum 2004+
Calculators Allowed Where appropriate, give your answers to 3 s.f.	Core Mathematics - C3
© ZigZag Education 2004	Cime Allowed:-1 hour 30 minutes
年	

1. a) Simplify the expression: $1-\frac{1}{1+\cot ^{2} \phi}$
b) Show that: $\cos \phi+\sin \phi \tan 2 \phi=\frac{\cos \phi}{\cos 2 \phi}$
2. $f(x)=x^{3}-2 x-3$

The root α to the equation $\mathrm{f}(x)=0$ can be estimated using the iterative formula $x_{n+1}=\sqrt{\frac{3}{x_{n}}+2}$ with $x_{0}=2$.
a) Calculate x_{1}, x_{2}, x_{3} and x_{4} giving your answers to 4 significant figures.
b) Prove that, to 4 significant figures, α is 1.893 .

John found this iterative formula. He found it by first writing $x^{3}-2 x-3$ in the form $x\left(x^{2}-2\right)-3$.
c) Continue the likely algebraic steps that John may have taken to come across this iterative formula.[3]
3. a) Solve the inequality $|2 x+3|>4$
b) i) Sketch a graph of $y=|(x-1)(x-3)|$

The coordinates on the graph where the gradient is 1 is (a, b) where $1<a<3$.
ii) Find the value of a.
4. Sketch separately the following graphs:
a) $\quad \mathrm{f}(|x|)$
b) $\quad|\mathrm{f}(x)|$
c) $\quad 3 \mathrm{f}(2 x)$

In each case write on where each graph crosses or touches the x and y-axis.

d) Given that the curved part of the graph $\mathrm{y}=\mathrm{f}(x)$ is given by $\mathrm{f}(x)=\mathrm{k}-3 \mathrm{e}^{x+2}, x \leq-1$, find the value of k exactly.
e) Find the gradient of the steepest part of the curved part of the graph.
5. $\quad \mathrm{f}(x)=x^{2}-1$ with $x \varepsilon ; \quad$ and $\mathrm{g}(x)=1-x^{2}$ with $x \varepsilon$;
a) Find $\operatorname{fg}(x)$ and $\operatorname{gf}(x)$ and solve the equation $\operatorname{fg}(x)=\operatorname{gf}(x)$

For the inverse of $\mathrm{f}(x)$ to exist, it is necessary for the domain of $\mathrm{f}(x)$ to be restricted. The domain of the $\mathrm{f}(x)$ is now restricted such that $x \geq \mathrm{r}$.
b) State the largest possible domain of $\mathrm{f}(x)$ such that the inverse of $\mathrm{f}(x)$ exists.
c) Assuming the domain of $\mathrm{f}(x)$ is appropriately restricted, then find the inverse of $\mathrm{f}(x)$.
6. $\quad \mathrm{f}(x)=\ln x$ and $\mathrm{g}(x)=\ln 2 x$
a) Find $\mathrm{f}^{\prime}(x)$ and g ' (x)
b) Hence find the tangent to the curve $\mathrm{y}=\mathrm{f}(x)$ when $x=3$.
c) Find the normal to the curve $\mathrm{y}=\mathrm{g}(x)$ when $x=3$.
7. a) Using a trigonometric identity, simplify the expression: $\sin 2 x \cos 4 x+\cos 2 x \sin 4 x$
b) Using your answer to part a) and the identity $\sin 2 x \cos 4 x \equiv \frac{1}{2}[\sin 6 x-\sin 2 x]$ prove that $2 \sin 2 x \cos 4 x+\cos 2 x \sin 4 x \equiv 1 / 2[3 \sin 6 x-\sin 2 x]$
c) Show that the curve $y=e^{-x} \cos x$ has 2 stationary points between $0<x<2 \pi$ and with clear working distinguish if these points are maximum or minimum points.

