mark scheme

Practice Paper A : Core Mathematics 3

Question	General Scheme		Marks
Number			
1			
(a)	(Let $f(x) = x^4 + x^2 - 8x - 9$)		
	$f(2.1) = 2.1^4 + 2.1^2 - 8(2.1) - 9 = -1.94(19), (<0)$	M1 – substitutes 2.1 and 2.2 into	M1
	$f(2.2) = 2.2^{4} + 2.2^{2} - 8(2.2) - 9 = 1.66(56), (>0)$	the given equation.	
	Since there has been a <u>change of sign</u> (and $f(x)$ is continuous over the interval [2.1,2.2]),	A1 – correct substitution and a given conclusion	A1
	$x^{4} + x^{2} - 8x - 9 = 0$ has a root α in the interval [2.1, 2.2].		(2)
(b)	$x^4 = 9 + 8x - x^2 \rightarrow x = \sqrt[4]{9 + 8x - x^2}$	B1 – cso AG	B1
			(1)
Note	This is a show that question. Candidates must thus not simply quote the final answer by show the intermediate stage above (accept terms in any order). For example, if a candid writes		
	$x^4 + x^2 - 8x - 9 = 0 \rightarrow x = \sqrt[4]{9 + 8x - x^2}$ This alone will score B0.		
(c)	$x_{1} = \sqrt[4]{9 + 8x_{0} - (x_{0})^{2}} = \sqrt[4]{9 + 8(2.1) - (2.1)^{2}}$	M1 – attempts to use the iterative formula to work out	M1
	=2.150(56)	x_1 (can be implied)	
	$x_2 = 2.155$	A1 – x_1 , x_2 or x_3	A1
		correct	
	$x_3 = 2.156$	A1 y y and y	
		$A_1 = x_1, x_2$ and x_3	A1
		decimal places	(3)
(d)	$\alpha = 2.2$	B1 – cao	B1
			(1)
		Total	7

	2			
	(a)	By long division:		
		$ \begin{array}{r} x^{2} + 5x - 5 \\ x + 1 \overline{\smash{\big)}} x^{3} + 6x^{2} + 0x - 8 \\ x^{3} + x^{2} \qquad \downarrow \qquad \downarrow \end{array} $	M1 – correct attempt at long division	M1
		$\frac{\underbrace{M1}}{5x^2 + 0x} \downarrow$	M1 – the <i>method</i> of long division carried out correctly	M1
		$5x^2 + 5x \downarrow$	A1 – correct division	A1
		-5x-8		
		-5x-5		
		— — — <u>— — 3</u> 		
		$\therefore \frac{x^3 + 6x^2 + 8}{x + 1} \equiv x^2 + 5x - 5 - \frac{3}{x + 1}$	A1 – expressed in the correct form	A1
		a=1, b=5, c=-5, d=-3		(4)
	(b)	$\frac{d}{dx}\left[x^{2}+5x-5-\frac{3}{x+1}\right] = 2x+5+\dots$	B1 – correct differentiation of their $ax^2 + bx + c$	B1
		$\frac{d}{dx}\left[-\frac{3}{x+1}\right] = -3(-1)(x+1)^{-2} = \frac{3}{(x+1)^2}$	M1 – correct attempt at the chain rule A1ft – correct differentiation	M1 A1
	Note	Some candidates may differentiate $(-) \frac{3}{1}$ b	y the quotient rule. If so, award M1	for the
		site of $\frac{(-)3(1)}{(x+1)^2}$ and A1ft for correct differentiation	ation based on <i>their</i> (b).	
		:. $f'(x) = 2x + 5 + \frac{3}{(x+1)^2}$	A1 – cao	A1 (4)
F			Total	8

3 (a)	$\frac{5}{e^{2x}} = 4$ $e^{2x} = \frac{5}{4} \rightarrow 2x = \ln \frac{5}{4} \rightarrow x = \frac{1}{2} \ln \frac{5}{4} \text{ OE}$	M1 – attempts to rearrange the equation into the form $e^{2x} = \frac{a}{b}$ M1 – correct application of logarithms A1 – correct value of <i>x</i> oe	M1 M1 A1 (3)
(b)	y = -4	B1 – correct shape and in the correct quadrants B1ft – correct x and y intercept, ft <i>their</i> (a) for x intercept B1 – equation of the asymptotes correctly marked on and stated	B1 B1 B1
(c)	$x \le \frac{1}{2} \ln \frac{5}{4}$	B1ft $-x \le \frac{1}{2} \ln \frac{5}{4}$ ft <i>their</i> (a)	B1 (1)
		Total	7

4 (a)	$A = \pi r l + \pi r^{2}$ $l = \sqrt{h^{2} + r^{2}} = \sqrt{16^{2} + x^{2}} = \sqrt{256 + x^{2}}$	M1 – attempts to use $\pi rl + \underline{\pi r^2}_{\text{necessary}}$ M1 – correct attempt to use Pythagoras to find l	M1 M1
	$\therefore A = \pi x \sqrt{256 + x^2} + \pi x^2$	A1 - cso AG	A1 (3)
(b)	$\frac{dA}{dx} = \pi \left[\underbrace{x'\sqrt{256 + x^2} + x(\sqrt{256 + x^2})'}_{M1} \right] + 2\pi x$	M1 – use of the product rule to differentiate $\pi x \sqrt{256 + x^2}$ term	M1
	$\frac{dA}{dx} = \pi \left[\sqrt{256 + x^2} + x \left(\frac{1}{2}\right) (2x) (256 + x^2)^{-\frac{1}{2}} \right] + 2\pi x$	M1 – use of the chain rule to differentiate $\sqrt{256 + x^2}$	M1
	$\frac{dA}{dx} = \pi \left[\sqrt{256 + x^2} + \frac{x^2}{\sqrt{256 + x^2}} + 2x \right]$	A1 – correct differentiation (need not be simplified) oe	A1
	$\frac{dA}{dx}\Big _{x=12} = \pi \left[\sqrt{256 + 12^2} + \frac{12^2}{\sqrt{256 + 12^2}} + 2(12)\right]$	dM1 – substitutes 12 into <i>their</i> $\frac{dA}{dx}$	M1
	$\left. \frac{dA}{dx} \right _{x=12} = \pi \left[20 + \frac{36}{5} + 24 \right] = \frac{256}{5} \pi \text{ OE}$	A1 – achieves the correct result, accept equivalent forms if given. If the candidate achieves this and simplifies incorrectly , award A0.	A1 (5)
		Total	8

5 (a)	$4\cos\theta - 7\sin\theta \equiv R\cos\theta\cos\alpha - R\sin\theta\sin\alpha$	M1 – correct expression	M1
	$R\cos\alpha = 4$, $R\sin\alpha = 7$	seen (or implied)	
(i)	$\tan \alpha = \frac{7}{4} \rightarrow \alpha = 1.0516 = 1.05 (3sf)$	M1 – correct expression for $\tan \alpha$ A1 – $\tan \alpha$ evaluated correctly to 3 significant	M1 A1
(ii)	$R = \sqrt{4^2 + 7^2} = \sqrt{65}$	B1 – correct exact value for R . If decimal value given after, apply isw and still award B1	B1 (4)
(b)	$2\sqrt{65}\cos(2\theta - 1.0516) = 15\sin(2\theta - 1.0516)$	B1ft – replaces $8\cos 2\theta - 14\sin 2\theta$ with twice <i>their</i> (a)	B1
	∴ $\tan(2\theta - 1.0516) = \frac{2\sqrt{65}}{15}$	M1 – forms equation in terms of $\tan(2\theta - 1.0516) =$	M1
	$2\theta - 1.0516 = \tan^{-1}\left(\frac{2\sqrt{65}}{15}\right) = 0.8215, ()$	A1 – determines principal value correctly	A1
	Other values given by: $\pi + 0.8215, 2\pi + 0.8215, 3\pi + 0.8215$	M1 – correct attempt seen to calculate all other values in range	M1
	$\therefore 2\theta - 1.0516 = 0.8215, 3.9630, 7.1046, 10.2462$	M1 – adds α and then divides by 2 to at least one of their values to get θ	M1
	$\therefore \theta = 0.94, 2.51, 4.08, 5.65$ AWRT	A1 – all values of θ given	A1 (6)
(c)	$p(\theta) = 10 - 65\cos^2(\theta + 1.0516)$	B1ft – seen anywhere (can be implied) ft on <i>their</i> (a)	B1
(i)	maximum when $\cos^2(\theta + \alpha) = 0 \implies \text{maximum} = 10$	B1 – cao	B 1
(ii)	$\theta + 1.0516 = \frac{\pi}{2} \implies \theta = 0.52 \text{ AWRT}$	M1 – sets $\theta + \alpha = \frac{\pi}{2}$	M1
		A1 – 0.52	A1 (4)
		Total	14

6	Decay will be of the form $M = 120e^{-kt}$	B2 – decay in the correct form (need not be stated directly). (B1 for Ae^{-kt} or e^{-kt})	B2
	$72.9 = 120e^{-4k}$ $e^{-4k} = \frac{72.9}{100} \implies k = -\frac{1}{10} \ln\left(\frac{72.9}{100}\right)$	M1 – substitutes M = 72.9, $t = 4$ into <i>their</i> equation	M1
	$\therefore M = 120e^{\frac{1}{4}\ln\left(\frac{72.9}{120}\right) \times 10} = 34.518 = 34.5g \text{ AWRT}$	A1 - cao	AI
		Total	5

7 (i) (a)	$\frac{d}{dx}\left[e^{3x^2}\sin x\right] = e^{3x^2}\cos x + \frac{d}{dx}\left[3x^2\right]e^{3x^2}\sin x$	M1 – differentiation in the form of the product rule M1 – attempt to use the	M1 M1
		chain rule to differentiate e^{3x^2} A1 – correct unsimplified differentiation	A1
	$\frac{d}{dx}\left[e^{3x^2}\sin x\right] = e^{3x^2}\cos x + 6e^{3x^2}x\sin x \text{ OE}$	A1 – correctly simplified. Accept further simplifications, but if incorrect ignore and apply isw	A1 (4)
(b)	$\frac{d}{dx} \Big[\cos \Big(\ln \Big(2x^2 \Big) \Big) \Big] = -\sin \Big(\ln \Big(2x^2 \Big) \Big) \times \frac{d}{dx} \Big[\ln \Big(2x^2 \Big) \Big]$	M1 – attempts to use the chain rule A1 – correct use of the chain rule	M1 A1
	$= -\sin\left(\ln\left(2x^2\right)\right) \times \frac{4x}{2x^2} = -\frac{2}{x}\sin\left(\ln\left(2x^2\right)\right) $ OE	M1 – correct method to differentiate the $ln(2x^2)$ term A1 – correctly simplified. Accept further simplifications, but if incorrect ignore and apply isw	M1 A1
(c)	$\frac{dy}{dx} = 3(\sec x)^2 \sec x \tan x = 3\sec^3 x \tan x$	M1 – application of the chain rule to find $\frac{dy}{dx}$	<u>(4)</u> M1
	$\frac{d^2y}{dx^2} = 3\sec^3 x \left(\sec^2 x\right) + \tan x \left(9\sec^3 x \tan x\right)$	M1 – attempts to find $\frac{d^2y}{dx^2}$ using the product	M1
	$= 3\sec^5 x + 9\sec^3 x \tan^2 x$	A1 – correct differentiation	A1
	$= 3\sec^5 x + 9\sec^3 x (\sec^2 x - 1)$	$M1 - use of$ $\tan^2 x = \sec^2 x - 1$	M1
	$= 12 \sec^{5} x - 9 \sec^{5} x$ $= 12 v^{\frac{3}{5}} - 9 v$	A1 – correct differentiation, all terms in the form $\sec^n x$	A1
	-12y - yy	A1 - cso	(6)
		1 otal	14

8 (a)	$\cos\left(x+\frac{\pi}{3}\right) = \sin\left(x+\frac{\pi}{4}\right)$ $\cos x \cos\frac{\pi}{3} - \sin x \sin\frac{\pi}{3} = \sin x \sin\frac{\pi}{4} + \cos x \cos\frac{\pi}{4}$ $\frac{1}{2}\cos x - \frac{\sqrt{3}}{2}\sin x = \frac{\sqrt{2}}{2}\sin x + \frac{\sqrt{2}}{2}\cos x$ $\sqrt{2}\sin x + \sqrt{3}\sin x = \cos x - \sqrt{2}\cos x$	 M2 – applies of compound angle formula (M1 for each side) A1 – correct use (unsimplified) A1 – correctly use (simplified) 	M2 A1 A1
	$\tan x = \frac{1 - \sqrt{2}}{\sqrt{2} + \sqrt{3}}$	M1 – rearranges for tan $x =$	M1
	$x = \tan^{-1} \left(\frac{1}{\sqrt{2} + \sqrt{3}} \right) = -\frac{\pi}{24}$	A1 – obtains principal value of tan x	Al
	$\therefore x = \frac{23}{24}\pi, \frac{25}{24}\pi$	M1 – method to find values that are in range A1 – correct values, ignore values outside of range, but award A0 for additional values in range	M1 A1 (8)
(b)	If $\sin k = x \implies \tan k = \frac{x}{\sqrt{1 - x^2}}$, $0 < k < \frac{\pi}{2}$	B1 – sight of $\sin k = x$ M1 – correct method to find $\tan k$, i.e. use of triangle A1 – correct value of π	B1 M1 A1
		$\tan k \text{ for } 0 < k < \frac{\pi}{2}$	A 1
	Then, $\tan k = -\frac{x}{\sqrt{1-x^2}}$ for $-\frac{\pi}{2} < k < 0$.	AIn – cao	A1 (4)
		Total	12
ALT	A quick alternative to (a) may be:		
	$\cos\left(x + \frac{\pi}{3}\right) = \sin\left(x + \frac{\pi}{4}\right) \mathbf{B1}$		
	$\sin\left(\frac{\pi}{2} - x - \frac{\pi}{3}\right) = \sin\left(x + \frac{\pi}{4}\right) \mathbf{M1} \mathbf{M1} \mathbf{A1}$		
	$\frac{\pi}{6} - x = x + \frac{\pi}{4} \rightarrow 2x = -\frac{\pi}{12}$ M1 A1		

Then reward such candidates a mark for attempting to find the other solutions and a	
mark for the final answers. Note in this scheme the third A1 becomes B1 here.	

Notes on alternative methods:

This mark scheme may feature some alternative solutions, but, of course, at this level, there is likely to be questions that have many others. Where alternative methods are used, you should award full marks **if the method is correct** (do **not** award full marks for methods that coincidentally lead to the right answer). If the method is *not* correct, then you should aim to mark it by being as faithful to the original scheme as you can and ensure that you award the same amount of marks for the same amount of *progress* in a question as you would award using the general scheme.