# mark scheme 

Practice Paper A : Core Mathematics 3

| Question <br> Number | General Scheme |  | Marks |
| :---: | :---: | :---: | :---: |
| (a) | $\begin{aligned} & \text { ( Let } \left.f(x)=x^{4}+x^{2}-8 x-9\right) \\ & f(2.1)=2.1^{4}+2.1^{2}-8(2.1)-9=-1.94(19),(<0) \\ & f(2.2)=2.2^{4}+2.2^{2}-8(2.2)-9=1.66(56),(>0) \end{aligned}$ | M1 - substitutes 2.1 and 2.2 into the given equation | M1 |
|  | Since there has been a change of sign (and $f(x)$ is continuous over the interval [2.1,2.2]), $x^{4}+x^{2}-8 x-9=0$ has a root $\alpha$ in the interval [2.1,2.2]. | A1 - correct substitution and a given conclusion | $\begin{array}{ll}\text { A1 } & \\ \\ \\ \\ & \text { (2) }\end{array}$ |
| (b) | $x^{4}=9+8 x-x^{2} \rightarrow x=\sqrt[4]{9+8 x-x^{2}}$ | B1 - cso AG | B1 <br> (1) |
| Note | This is a show that question. Candidates must thus not simply quote the final answer but show the intermediate stage above (accept terms in any order). For example, if a candidate writes $x^{4}+x^{2}-8 x-9=0 \rightarrow x=\sqrt[4]{9+8 x-x^{2}}$ <br> This alone will score B0. |  |  |
| (c) | $\begin{aligned} & x_{1}=\sqrt[4]{9+8 x_{0}-\left(x_{0}\right)^{2}}=\sqrt[4]{9+8(2.1)-(2.1)^{2}} \\ & =2.150(56 \ldots) \end{aligned}$ | M1 - attempts to use the iterative formula to work out $x_{1}$ (can be implied) | M1 |
|  | $\begin{aligned} & x_{2}=2.155 \\ & x_{3}=2.156 \end{aligned}$ | A1 - $x_{1}, x_{2}$ or $x_{3}$ correct <br> A1 - $x_{1}, x_{2}$ and $x_{3}$ correct to three decimal places | A1 <br> A1 <br> (3) |
| (d) | $\alpha=2.2$ | B1 - cao | B1 |
|  |  | Total | 7 |


| (a) | By long division: $\begin{array}{r} x+1 \begin{array}{r} x^{2}+5 x-5 \\ \underbrace{x^{3}+6 x^{2}+0 x-8}_{\text {M1 }} \\ x^{3}+x^{2} \\ 5 x^{2}+0 x \\ \frac{5 x^{2}+5 x}{} \\ \frac{5 x}{-5 x-8} \\ \frac{-5 x-5}{-3} \end{array} \\ \underbrace{}_{\text {M1 A1 }} \end{array}$ | M1 - correct attempt at long division <br> M1 - the method of long division carried out correctly <br> A1 - correct division | M1 <br> M1 <br> A1 |
| :---: | :---: | :---: | :---: |
| (b) | $\begin{aligned} & \therefore \frac{x^{3}+6 x^{2}+8}{x+1} \equiv x^{2}+5 x-5-\frac{3}{x+1} \\ & a=1, b=5, c=-5, d=-3 \end{aligned}$ | A1 - expressed in the correct form | A1 <br> (4) |
|  | $\frac{d}{d x}\left[x^{2}+5 x-5-\frac{3}{x+1}\right]=2 x+5+\ldots$ | B1 - correct differentiation of their $a x^{2}+b x+c$ | B1 |
|  | $\frac{d}{d x}\left[-\frac{3}{x+1}\right]=-3(-1)(x+1)^{-2}=\frac{3}{(x+1)^{2}}$ | M1 - correct attempt at the chain rule <br> A1ft - correct differentiation | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ |
| Note | Some candidates may differentiate $(-) \frac{3}{x+1}$ by the quotient rule. If so, award M1 for the site of $\frac{(-) 3(1)}{(x+1)^{2}}$ and A1ft for correct differentiation based on their (b). |  |  |
|  | $\therefore f^{\prime}(x)=2 x+5+\frac{3}{(x+1)^{2}}$ | A1 - cao |  |
|  | Total |  | 8 |


| 3 <br> (a) | $\begin{aligned} & \frac{5}{e^{2 x}}=4 \\ & e^{2 x}=\frac{5}{4} \rightarrow 2 x=\ln \frac{5}{4} \rightarrow x=\frac{1}{2} \ln \frac{5}{4} \mathbf{O E} \end{aligned}$ | M1 - attempts to rearrange the equation into the form $e^{2 x}=\frac{a}{b}$ <br> M1 - correct application of logarithms <br> A1 - correct value of $x \mathbf{0 e}$ | M1 <br> M1 <br> A1 <br> (3) |
| :---: | :---: | :---: | :---: |
| (b) |  | B1 - correct shape and in the correct quadrants <br> B1ft - correct $x$ and $y$ intercept, ft their (a) for $x$ intercept <br> B1 - equation of the asymptotes correctly marked on and stated | B1 <br> B1 <br> B1 |
| (c) | $x \leq \frac{1}{2} \ln \frac{5}{4}$ | B1ft $-x \leq \frac{1}{2} \ln \frac{5}{4} \mathrm{ft}$ their <br> (a) | B1 <br> (1) |
|  |  | Total | 7 |

\begin{tabular}{|c|c|c|c|}
\hline 4
(a)

(b) \& \[
$$
\begin{aligned}
& A=\pi r l+\pi r^{2} \\
& l=\sqrt{h^{2}+r^{2}}=\sqrt{16^{2}+x^{2}}=\sqrt{256+x^{2}}
\end{aligned}
$$

\] \& | M1 - attempts to use $\pi r l+\underbrace{\pi r^{2}}_{\text {necessary }}$ |
| :--- |
| M1 - correct attempt to use Pythagoras to find $l$ | \& | M1 |
| :--- |
| M1 | <br>


\hline \multirow{6}{*}{(b)} \& $\therefore A=\pi x \sqrt{256+x^{2}}+\pi x^{2}$ \& A1- cso AG \& | A1 |
| :--- |
| (3) | <br>

\hline \& $\frac{d A}{d x}=\pi[\underbrace{x^{\prime} \sqrt{256+x^{2}}+x\left(\sqrt{256+x^{2}}\right)}_{\mathrm{Ml}})^{\prime}]+2 \pi x$ \& M1 - use of the product rule to differentiate

$$
\pi x \sqrt{256+x^{2}} \text { term }
$$ \& M1 <br>

\hline \& $\frac{d A}{d x}=\pi\left[\sqrt{256+x^{2}}+x\left(\frac{1}{2}\right)(2 x)\left(256+x^{2}\right)^{-\frac{1}{2}}\right]+2 \pi x$ \& M1 - use of the chain rule to differentiate

$$
\sqrt{256+x^{2}}
$$ \& M1 <br>

\hline \& $\frac{d A}{d x}=\pi\left[\sqrt{256+x^{2}}+\frac{x^{2}}{\sqrt{256+x^{2}}}+2 x\right]$ \& A1 - correct differentiation (need not be simplified) oe \& A1 <br>

\hline \& $$
\left.\frac{d A}{d x}\right|_{x=12}=\pi\left[\sqrt{256+12^{2}}+\frac{12^{2}}{\sqrt{256+12^{2}}}+2(12)\right]
$$ \& dM1 - substitutes 12 into their $\frac{d A}{d x}$ \& M1 <br>

\hline \& $$
\left.\frac{d A}{d x}\right|_{x=12}=\pi\left[20+\frac{36}{5}+24\right]=\frac{256}{5} \pi \mathbf{O E}
$$ \& A1 - achieves the correct result, accept equivalent forms if given. If the candidate achieves this and simplifies incorrectly, award A0. \& A1

(5) <br>
\hline \& \& Total \& 8 <br>
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
5 \\
(a)
\end{tabular} \& \[
\begin{aligned}
\& 4 \cos \theta-7 \sin \theta \equiv R \cos \theta \cos \alpha-R \sin \theta \sin \alpha \\
\& R \cos \alpha=4, R \sin \alpha=7
\end{aligned}
\] \& M1 - correct expression seen (or implied) \& M1 \\
\hline (i) \& \[
\tan \alpha=\frac{7}{4} \rightarrow \alpha=1.0516 \ldots=1.05
\] \& \begin{tabular}{l}
M1 - correct expression for \(\tan \alpha\) \\
A1 \(-\tan \alpha\) evaluated correctly to 3 significant figures
\end{tabular} \& \[
\begin{array}{|l}
\hline \text { M1 } \\
\text { A1 }
\end{array}
\] \\
\hline (ii) \& \(R=\sqrt{4^{2}+7^{2}}=\sqrt{65}\) \& B1 - correct exact value for \(R\). If decimal value given after, apply isw and still award B1 \& B1

(4) <br>

\hline \multirow[t]{5}{*}{(b)} \& $2 \sqrt{65} \cos (2 \theta-1.0516 \ldots)=15 \sin (2 \theta-1.0516 \ldots)$ \& $$
\begin{array}{|l}
\hline \text { B1ft - replaces } \\
8 \cos 2 \theta-14 \sin 2 \theta \text { with } \\
\text { twice their (a) }
\end{array}
$$ \& B1 <br>

\hline \& \[
$$
\begin{aligned}
& \therefore \tan (2 \theta-1.0516 \ldots)=\frac{2 \sqrt{65}}{15} \\
& 2 \theta-1.0516 \ldots=\tan ^{-1}\left(\frac{2 \sqrt{65}}{15}\right)=0.8215 \ldots,(\ldots)
\end{aligned}
$$

\] \& | M1 - forms equation in terms of $\tan (2 \theta-1.0516 \ldots)=\ldots$ |
| :--- |
| A1 - determines principal value correctly | \& M1 <br>

\hline \& Other values given by:

$$
\pi+0.8215 \ldots, 2 \pi+0.8215 \ldots, 3 \pi+0.8215 \ldots
$$ \& M1 - correct attempt seen to calculate all other values in range \& M1 <br>

\hline \& $$
\therefore 2 \theta-1.0516=0.8215,3.9630,7.1046,10.2462
$$ \& M1 - adds $\alpha$ and then divides by 2 to at least one of their values to get $\theta$ \& \[

$$
\begin{array}{|l|}
\hline \text { M1 } \\
\hline
\end{array}
$$
\] <br>

\hline \& $\therefore \theta=0.94,2.51,4.08,5.65 \quad$ AWRT \& $\mathbf{A 1}$ - all values of $\theta$ given \& | A1 |
| :--- |
| (6) | <br>

\hline (c) \& $p(\theta)=10-65 \cos ^{2}(\theta+1.0516 \ldots)$ \& B1ft - seen anywhere (can be implied) ft on their (a) \& B1 <br>
\hline (i) \& maximum when $\cos ^{2}(\theta+\alpha)=0 \Rightarrow$ maximum $=10$ \& \& B1 <br>

\hline (ii) \& $$
\theta+1.0516 \ldots=\frac{\pi}{2} \Rightarrow \theta=0.52 \mathrm{AWRT}
$$ \& \[

\mathbf{M 1}-sets \theta+\alpha=\frac{\pi}{2}
\] \& M1 <br>

\hline \& \& A1-0.52 \& | A1 |
| :--- |
| (4) | <br>

\hline \& \& Total \& 14 <br>
\hline
\end{tabular}

| 6 | Decay will be of the form $M=120 e^{-k t}$ | B2 - decay in the correct form (need not be stated directly). (B1 for $A e^{-k t}$ or $e^{-k t}$ ) | B2 |
| :---: | :---: | :---: | :---: |
|  | $72.9=120 e^{-4 k}$ $e^{-4 k}=\frac{72.9}{120} \Rightarrow k=-\frac{1}{4} \ln \left(\frac{72.9}{120}\right)$ | M1 - substitutes $M=72.9, t=4$ into their equation <br> A1 - correct value of $k$ | A1 |
|  | $\therefore M=120 e^{\frac{1}{4} \ln \left(\frac{72.9}{120}\right) \times 10}=34.518 . .=34.5 \mathrm{~g} \text { AWRT }$ | A1 - cao | A1 |
|  |  | Total | 5 |


| (a) | $\frac{d}{d x}\left[e^{3 x^{2}} \sin x\right]=e^{3 x^{2}} \cos x+\frac{d}{d x}\left[3 x^{2}\right] e^{3 x^{2}} \sin x$ | M1 - differentiation in the form of the product rule <br> M1 - attempt to use the chain rule to differentiate $e^{3 x^{2}}$ <br> A1 - correct unsimplified differentiation | M1 <br> M1 <br> A1 |
| :---: | :---: | :---: | :---: |
|  | $\frac{d}{d x}\left[e^{3 x^{2}} \sin x\right]=e^{3 x^{2}} \cos x+6 e^{3 x^{2}} x \sin x \mathbf{O E}$ | $\mathbf{A 1}$ - correctly simplified. Accept further simplifications, but if incorrect ignore and apply isw | A1 <br>  <br>  <br> (4) |
| (b) | $\frac{d}{d x}\left[\cos \left(\ln \left(2 x^{2}\right)\right)\right]=-\sin \left(\ln \left(2 x^{2}\right)\right) \times \frac{d}{d x}\left[\ln \left(2 x^{2}\right)\right]$ | M1 - attempts to use the chain rule A1 - correct use of the chain rule | $\begin{array}{\|l} \hline \text { M1 } \\ \text { A1 } \end{array}$ |
|  | $=-\sin \left(\ln \left(2 x^{2}\right)\right) \times \frac{4 x}{2 x^{2}}=-\frac{2}{x} \sin \left(\ln \left(2 x^{2}\right)\right) \mathbf{O E}$ | M1 - correct method to differentiate the $\ln \left(2 x^{2}\right)$ term <br> A1 - correctly simplified. Accept further simplifications, but if incorrect ignore and apply isw | A1 <br> (4) |
| (c) | $\frac{d y}{d x}=3(\sec x)^{2} \sec x \tan x=3 \sec ^{3} x \tan x$ | M1 - application of the chain rule to find $\frac{d y}{d x}$ | M1 |
|  | $\begin{aligned} & \frac{d^{2} y}{d x^{2}}=3 \sec ^{3} x\left(\sec ^{2} x\right)+\tan x\left(9 \sec ^{3} x \tan x\right) \\ & =3 \sec ^{5} x+9 \sec ^{3} x \tan ^{2} x \end{aligned}$ | M1 - attempts to find $\frac{d^{2} y}{d x^{2}}$ using the product rule A1 - correct differentiation | M1 <br> A1 |
|  | $\begin{aligned} & =3 \sec ^{5} x+9 \sec ^{3} x\left(\sec ^{2} x-1\right) \\ & =12 \sec ^{5} x-9 \sec ^{3} x \\ & =12 y^{\frac{3}{5}}-9 y \end{aligned}$ | M1 - use of $\tan ^{2} x=\sec ^{2} x-1$ <br> A1 - correct differentiation, all terms in the form $\sec ^{n} x$ A1 - cso | A1 <br> (6) |
|  |  | Total | 14 |


| (a) | $\begin{aligned} & \cos \left(x+\frac{\pi}{3}\right)=\sin \left(x+\frac{\pi}{4}\right) \\ & \cos x \cos \frac{\pi}{3}-\sin x \sin \frac{\pi}{3}=\sin x \sin \frac{\pi}{4}+\cos x \cos \frac{\pi}{4} \\ & \frac{1}{2} \cos x-\frac{\sqrt{3}}{2} \sin x=\frac{\sqrt{2}}{2} \sin x+\frac{\sqrt{2}}{2} \cos x \\ & \sqrt{2} \sin x+\sqrt{3} \sin x=\cos x-\sqrt{2} \cos x \end{aligned}$ | M2 - applies of compound angle formula (M1 for each side) <br> A1 - correct use (unsimplified) <br> A1 - correctly use (simplified) | M2 <br> A1 <br> A1 |
| :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \tan x=\frac{1-\sqrt{2}}{\sqrt{2}+\sqrt{3}} \\ & x=\tan ^{-1}\left(\frac{1-\sqrt{2}}{\sqrt{2}+\sqrt{3}}\right)=-\frac{\pi}{24} \end{aligned}$ | M1 - rearranges for $\tan x=\ldots$ <br> A1 - obtains principal value of $\tan x$ | M1 <br> A1 |
|  | $\therefore x=\frac{23}{24} \pi, \frac{25}{24} \pi$ | M1 - method to find values that are in range A1 - correct values, ignore values outside of range, but award A0 for additional values in range | M1 <br> A1 <br> (8) |
| (b) | If $\sin k=x \Rightarrow \tan k=\frac{x}{\sqrt{1-x^{2}}}, 0<k<\frac{\pi}{2}$ | B1 - sight of $\sin k=x$ M1 - correct method to find $\tan k$, i.e. use of triangle <br> A1 - correct value of $\tan k$ for $0<k<\frac{\pi}{2}$ | B1 <br> M1 <br> A1 |
|  | Then, $\tan k=-\frac{x}{\sqrt{1-x^{2}}}$ for $-\frac{\pi}{2}<k<0$. | A1ft - cao | A1 <br> (4) |
|  |  | Total | 12 |
| ALT | A quick alternative to (a) may be: $\cos \left(x+\frac{\pi}{3}\right)=\sin \left(x+\frac{\pi}{4}\right)$ <br> Using $\cos x=\sin \left(\frac{\pi}{2}-x\right)$ (accept, of course, use of the $\begin{gathered} \sin \left(\frac{\pi}{2}-x-\frac{\pi}{3}\right)=\sin \left(x+\frac{\pi}{4}\right) \mathbf{M} \\ \frac{\pi}{6}-x=x+\frac{\pi}{4} \rightarrow 2 x=-\frac{\pi}{12} \end{gathered}$ | reverse): <br> M1 A1 <br> A1 |  |


|  | Then reward such candidates a mark for attempting to find the other solutions and a <br> mark for the final answers. Note in this scheme the third A1 becomes B1 here. |  |
| :--- | :--- | :--- |

Notes on alternative methods:

This mark scheme may feature some alternative solutions, but, of course, at this level, there is likely to be questions that have many others. Where alternative methods are used, you should award full marks if the method is correct (do not award full marks for methods that coincidentally lead to the right answer). If the method is not correct, then you should aim to mark it by being as faithful to the original scheme as you can and ensure that you award the same amount of marks for the same amount of progress in a question as you would award using the general scheme.

