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1. Use the derivatives of sin x and cos x to prove that the derivative of tan x is sec2 x. (4)

2. The function f is given by f : x  2 + 
2

3

x
,   x  ℝ,   x  –2.

(a) Express 2 + 
2

3

x
as a single fraction. (1)

(b) Find an expression for f –1(x). (3)

(c) Write down the domain of f –1. (1)

3. (a) Express as a fraction in its simplest form

214

13

3

2
2 


 xxx

.

(3)

(b) Hence solve 

1
214

13

3

2
2





 xxx

.

                          (3)

4. (a) Simplify 
xx

xx




2

2 34
.                   

(2)

(b) Find the value of x for which log2 (x
2 + 4x + 3) – log2 (x

2 + x) = 4.
                          (4)
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5. (i) Prove, by counter-example, that the statement

“ BABABA andallfor ,secsec)sec(  ”
is false

(2)
(ii) Prove that

 n
n

,
2

   ,2cosec2cottan
 ℤ.

(5)

6. (a) Prove that




2sin

2cos1
 tan  ,     

2

n
,   n  ℤ.

(3)
(b) Solve, giving exact answers in terms of ,

2(1 – cos 2 ) = tan  ,      0 <   <  .
(6)

7. Given that y = loga x,   x > 0, where a is a positive constant,

(a) (i) express x in terms of a and y,
(1)

(ii) deduce that ln x = y ln a.

(1)

(b) Show that 
x

y

d

d
= 

ax ln

1
.

(2)

The curve C has equation y = log10 x,  x > 0. The point A on C has x-coordinate 10. Using the 
result in part (b),

(c) find an equation for the tangent to C at A.
(4)

The tangent to C at A crosses the x-axis at the point B.

(d) Find the exact x-coordinate of B.
(2)
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8. The curve with equation y = ln 3x crosses the x-axis at the point P (p, 0).

(a) Sketch the graph of y = ln 3x, showing the exact value of p. 
(2)

The normal to the curve at the point Q, with x-coordinate q, passes through the origin. 

(b) Show that x = q is a solution of the equation x2 + ln 3x = 0. 
(4)

(c) Show that the equation in part (b) can be rearranged in the form x = 
2

e3
1 x .

(2)

(d) Use the iteration formula xn + 1 = 
2

e3
1 nx , with x0 = 3

1 , to find x1, x2, x3 and x4. Hence write 

down, to 3 decimal places, an approximation for q.  
(3)
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9. Figure 1

y

    (0, c)

O (d, 0) x

Figure 3 shows a sketch of the curve with equation y = f(x), x  0. The curve meets the 
coordinate axes at the points (0, c) and (d, 0).

In separate diagrams sketch the curve with equation 

(a) y = f1(x), 
(2)

(b) y = 3f(2x).
(3)

Indicate clearly on each sketch the coordinates, in terms of c or d, of any point where the curve 
meets the coordinate axes. 

Given that f is defined by 

f : x  3(2x )  1,  x  ℝ,  x  0,

(c) state

(i) the value of c,

(ii) the range of f.
(3)

(d) Find the value of d, giving your answer to 3 decimal places. 
(3)

The function g is defined by 

g : x  log2 x,  x  ℝ,  x  1.

(e) Find fg(x), giving your answer in its simplest form.
(3)

END
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1. 
Use the derivatives of sin x and cos x to prove that the derivative of tan x is sec2 x. 
(4)





2.
The function f is given by f : x 
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(a)
Express 2 + 
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 as a single fraction.
 (1)


(b)
Find an expression for f –1(x).
(3)


(c)
Write down the domain of f –1.
(1)




3.
(a)
Express as a fraction in its simplest form
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(b)
Hence solve 
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4. 
(a)
Simplify 
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(b)
Find the value of x for which log2 (x2 + 4x + 3) – log2 (x2 + x) = 4.




   
                  
     (4)




5.
(i) 
Prove, by counter-example, that the statement


“
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(ii) 
Prove that
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6.
(a) 
Prove that
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(b) 
Solve, giving exact answers in terms of (,





2(1 – cos 2( ) = tan ( ,      0 < (  < ( .





(6)




7. 
Given that y = loga x,   x > 0, where a is a positive constant,


(a)
(i)
express x in terms of a and y,


(1)


(ii)
deduce that ln x = y ln a.


(1)


(b)
Show that 

[image: image11.wmf]x


y


d


d


 = 

[image: image12.wmf]a


x


ln


1


.


(2)


The curve C has equation y = log10 x,  x > 0. The point A on C has x-coordinate 10. Using the result in part (b),


(c)
find an equation for the tangent to C at A.


(4)


The tangent to C at A crosses the x-axis at the point B.


(d)
Find the exact x-coordinate of B.


(2)






8.
The curve with equation y = ln 3x crosses the x-axis at the point P (p, 0).


(a)
Sketch the graph of y = ln 3x, showing the exact value of p. 


 (2)

The normal to the curve at the point Q, with x-coordinate q, passes through the origin. 


(b)
Show that x = q is a solution of the equation x2 + ln 3x = 0. 


(4)


(c)
Show that the equation in part (b) can be rearranged in the form x = 
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(d)
Use the iteration formula xn + 1 = 
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, with x0 = 
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, to find x1, x2, x3 and x4. Hence write down, to 3 decimal places, an approximation for q.  


(3) 




9.





Figure 1





y
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(d, 0)




x


Figure 3 shows a sketch of the curve with equation y = f(x), x ( 0. The curve meets the coordinate axes at the points (0, c) and (d, 0).


In separate diagrams sketch the curve with equation 


(a)
y = f(1(x), 


(2)


(b)
y = 3f(2x).


(3)


Indicate clearly on each sketch the coordinates, in terms of c or d, of any point where the curve meets the coordinate axes. 


Given that f is defined by 







f : x ( 3(2(x ) ( 1,  x ( ℝ,  x ( 0,


(c)
state


(i)
the value of c,


(ii)
the range of f.




(3)


(d)
Find the value of d, giving your answer to 3 decimal places. 


(3)


The function g is defined by 







g : x ( log2 x,  x ( ℝ,  x ( 1.


(e)
Find fg(x), giving your answer in its simplest form.


(3)
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