mark

 schemePractice Paper A : Core Mathematics 2

\begin{tabular}{|c|c|c|c|}
\hline 2 (a) \& \multicolumn{2}{|l|}{\begin{tabular}{l}
\[
(2 a+b)^{8}=\underbrace{(2 a)^{8}}_{\mathrm{B} 1}+\underbrace{{ }^{8} C_{1}(2 a)^{7}(b)^{1}+{ }^{8} C_{2}(2 a)^{6}(b)^{2}+{ }^{8} C_{3}(2 a)^{5}(b)^{3}}_{\mathrm{M} 1 \mathrm{~A} 2}+\ldots
\] \\
B1 - first term correctly expressed (need not be evaluated). Accept equivalent forms, i.e. \({ }^{8} C_{0}(2 a)^{8}(b)^{0}\) \\
M1 - second, third and fourth terms of the expansion of the form \({ }^{8} C_{k / 8-k}(2 a)^{8-k}(b)^{k}\) isw \\
A2 - correct unsimplified expansion in terms of binomial coefficients
\[
(2 a+b)^{8}=256 a^{8}+1024 a^{7} b+1792 a^{6} b^{2}+1792 a^{5} b^{3}+\ldots
\] \\
A1 - correct simplified expansion \\
Note: accept \(\binom{n}{r}\) as alternative notation for \({ }^{n} C_{r}\) throughout
\end{tabular}} \& B1
M1
A2

A1
A1

(5)

\hline \& $\left(a+\frac{b}{2}\right)^{8}=\left[\frac{1}{2}(2 a+b)\right]^{8}=\frac{1}{256}(2 a+b)^{8}$ \& | B1 - cso |
| :--- |
| The value of k must be clearly obtained and not just stated | \& B1 $\begin{aligned} & \\ & \\ & \\ & \text { (1) }\end{aligned}$

\hline \multirow[t]{2}{*}{(c)} \& \[
$$
\begin{aligned}
& \frac{\frac{1}{256}\left(256 a^{8}+1024 a^{7} b+1792 a^{6} b^{2}+1792 a^{5} b^{3}+\ldots\right)}{4 a b} \\
& \frac{1}{1024 a b}\left(256 a^{8}+1024 a^{7} b+1792 a^{6} b^{2}+1792 a^{5} b^{3}+\ldots\right) \\
& =\frac{256 a^{8}}{1024 a b}+\frac{1024 a^{7} b}{1024 a b}+\frac{1792 a^{6} b^{2}}{1024 a b}+\frac{1792 a^{5} b^{3}}{1024 a b}+\ldots \\
& \frac{1}{4} a^{7} b^{-1}+a^{6}+\frac{7}{4} a^{5} b+\frac{7}{4} a^{4} b^{2}+\ldots
\end{aligned}
$$

\] \& | M1 - correct method using (b) |
| :--- |
| A1ft - correct expansion unsimplified |
| A1 - cao | \& | M1 |
| :--- |
| A1 |
| A1 |
| (3) |

\hline \& \& Total \& 9

\hline
\end{tabular}

${ }^{4}$ (a)	$x^{2}+(y-5)^{2}=5^{2}$		B1 - LHS correct oe B1 - RHS correct oe	B1 B1 (2)
(b)	$x^{2}+(3 x-5)^{2}=25$$x^{2}+9 x^{2}-30 x+25=25$		M1 - correct method to find the coordinates of intersection	M1
	$\begin{aligned} & x^{2}-3 x=0 \\ & x=0, x=3 \end{aligned}$		A1 - correct values of x	A1
	$y=3(3)=9$$\therefore P(3,9)$		M1 - substitutes $x=3$ to find the y coordinate of P A1 - $P(3,9)$ cao	M1 A1 (4)
(c)	Method 1 $\begin{aligned} & \cos \theta=\frac{5^{2}+5^{2}-(3 \sqrt{10})^{2}}{2(5)(5)} \\ & =-\frac{4}{5} \end{aligned}$	Alternative 1 $\begin{aligned} & \theta=180-2\left(90-\tan ^{-1} \frac{9}{3}\right) \\ & \therefore \cos \theta=-\frac{4}{5} \end{aligned}$	Accept other methods M1 - use of cosine rule or geometry $\mathbf{A 1} \text { - cao }$	M1 A1 (2)
(d) (e)	Method 1 $\frac{1}{2} \times 5 \times 5 \times \sin \theta=7.5$	Alternative 1 $\frac{9 \times 3}{2}-\frac{(9-5) \times 3}{2}=7.5$	Accept other methods M1 - correct method $\text { A1 - } 7.5$	M1 A1 (2)
	$\text { Area of sector }=\frac{\theta}{2} r^{2}=\frac{\cos ^{-1}\left(-\frac{4}{5}\right)}{2}(5)^{2}=31.226 \ldots$		M1 - correct method to work out the area of the sector (accept working in degrees) A1 - correct area for the sector	M1 A1
	Area of $R=31.226 \ldots-7.5=23.726 \ldots=23.7$		M1 - area of sector area of triangle A1 - cao, no ft	M1 A1 (4)
			Total	14

6 (a)	$\log _{3}(3 b)+\log _{9}(b)=2$ M1 - attempt to obtain an equation with one variable	M1
	Since $\log _{3}(x)=2 \log _{9}(x)$, B1 - this principle seen anywhere (candidates may use the formula from the booklet to obtain this) $2 \log _{9}(3 b)+\log _{9}(b)=2$	B1
	$\log _{9}\left(9 b^{3}\right)=2$ M1 - use of multiplication rule for logs M1 - removal of the logs A1 - correct exact value for b $9 b^{3}=81 \rightarrow b=\sqrt[3]{9}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { M1 } \\ \text { A1 } \end{array}$
	$\therefore a=3 \sqrt[3]{9}$ M1 - substitutes their b into an equation to find a $\mathbf{A 1}-$ correct exact value for a	M1 A1
	Total	7
ALT	If candidates use the formula to change the base, sight of $\log _{3}(3 b)=\frac{\log _{9}(3 b)}{\log _{9} 3}=2 \log _{9}(3 b)$ is all needed for $\mathbf{B 1}$. Candidates may then, alternatively, change the $\log _{9} b$ term to $\frac{1}{2} \log _{3} b$, which should also be accepted. Note also that candidates may make a substitution for b at the beginning of the question - although this is likely to prove tougher algebraically.	

7 (a)	$\frac{d y}{d x}=3 x^{2}-6 x+27$		M1 - correct method to differentiate one term A1 - correct derivative	M1 A1 (2)
(b)	If increasing, $\frac{d y}{d x}>0$$\begin{aligned} & 3 x^{2}-6 x+27=3\left(x^{2}-2 x+\frac{27}{3}\right) \\ & =3\left[(x-1)^{2}-1+\frac{27}{3}\right]>0 \text { for all } x \end{aligned}$		B1 - idea that, if increasing, $\frac{d y}{d x}>0$ M1 - completes the square to show that their $\frac{d y}{d x}>0$ A1 - correct proof	B1 M1 A1 (3)
(c)	If there are no stationary points, $3 x^{2}-6 x+27=0$ has no solutions.		B1 - idea that, if there are no stationary points, there is no value of x such that $\frac{d y}{d x}=0$	B1
	Method 1: $\begin{aligned} & (x-1)^{2}=-8 \\ & x-1 \neq \sqrt{-8} \end{aligned}$ Hence, the curve has no stationary points	Method 2: $6^{2}-4(3)(27)=-288<0$ Since $b^{2}-4 a c<0$, the curve has no stationary points	M1 - correct method to show the derivative has no solutions A1 - correctly shows and justifies that the derivative has no solutions	M1 A1 (3)
(d)			B1 - correct shape (see note) B1 - passes through $y=3$	B1 B1 (2)
Note	Ideally, the sketches should be slightly curvaceous. Although, due to scales, you should be prepared to accept completely straight lines here. Do not, however, accept sketches that imply the presence of stationary points or points of inflection.			
			Total	7

${ }^{8}$ (a)	$\sin \theta-\frac{1}{\sin \theta} \equiv \frac{\sin ^{2} \theta-1}{\sin \theta}$	M1 - use of a common denominator	M1
(b)	$\equiv \frac{-\cos ^{2} \theta}{\sin \theta} \equiv-\cos \theta \times \frac{\cos \theta}{\sin \theta}$	M1 - use of $1-\sin ^{2} \theta=\cos ^{2} \theta$	M1
	$\equiv-\cos \theta \times \frac{1}{\tan \theta}=-\frac{\cos \theta}{\tan \theta}$	A1 - correct proof showing all intermediate steps	A1 (3)
	$\tan ^{2} 2 x=\frac{2}{\cos 2 x}\left(-\frac{\cos 2 x}{\tan 2 x}\right)+\tan ^{2} 2 x-4$	B1 - correct LHS M1 - use of (a) to simplify the RHS	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \end{aligned}$
	$\begin{aligned} & 4=-\frac{2}{\tan 2 x} \\ & \tan 2 x=-\frac{1}{2} \end{aligned}$	A1 - correct simplification	A1
	$2 x=\tan ^{-1}\left(-\frac{1}{2}\right)=-0.463 \ldots$	dM1-2x $=\tan ^{-1}(n)$	M1
	$2 x=\pi-0.463 \ldots, 2 \pi-0.463 \ldots$ and $2 \pi+(\pi-0.463 \ldots), 2 \pi+(2 \pi-0.463 \ldots)$	ddM1 - attempt to find values of $2 x$ between 0 and 4π	M1
	$\begin{aligned} & 2 x=2.678 \ldots, 5.820 \ldots, 8.961 \ldots, 12.103 \ldots \\ & x=1.3,2.9,4.5,6.1 \text { AWRT } \end{aligned}$	ddM1 - divides at least one of their values of $2 x$ by 2 A1 - correct values of x	M1 A1 (7)
		Total	10

Notes on alternative methods:

This mark scheme may feature some alternative solutions, but, of course, at this level, there is likely to be questions that have many others. Where alternative methods are used, you should award full marks if the method is correct (do not award full marks for methods that coincidentally lead to the right answer). If the method is not correct, then you should aim to mark it by being as faithful to the original scheme as you can and ensure that you award the same amount of marks for the same amount of progress in a question as you would award using the general scheme.

