mark scheme

Practice Paper A : Core Mathematics 2

Question Number	General Scheme	Marks
1		
(a)	$\frac{4}{5}$ M1 – use of a triangle or	M1
	$\sin^2 \theta = 1 - \cos^2 \theta$ A1 - cao	A1
		(2)
(b)	$\frac{3}{5}$ $\frac{11 - \text{use of a}}{\tan \theta} = \frac{\sin \theta}{\cos \theta} \text{ with }$	M1
	their $\sin \theta$ A1 – cao	A1 (2)
Note	Award M1 in both parts if candidates draw a right angled triangle with the hypoten length 5, the opposite of length 4 and the adjacent of length 3 in part (a), but do not this if they draw the triangle in part (b)	
	Total	4

2 (a)	$(2a+b)^{8} = \underbrace{(2a)^{8}}_{B1} + \underbrace{{}^{8}C_{1}(2a)^{7}(b)^{1} + {}^{8}C_{2}(2a)^{6}(b)^{2} + {}^{8}C_{3}(2a)^{5}(b)^{3}}_{M1 A2} + \dots$				
B1 – first term correctly expressed (need not be evaluated). Accept equival					
	forms, i.e. ${}^{8}C_{0}(2a)^{8}(b)^{0}$ M1 – second, third and fourth terms of the expansion of the form ${}^{8}C_{k/8-k}(2a)^{8-k}(b)^{k}$ isw				
	A2 – correct unsimplified expansion in terms of binomial co	oefficients	A2		
	$(2a+b)^8 = 256a^8 + 1024a^7b + 1792a^6b^2 + 1792a^5b^3 +$ A1 – correct simplified expansion				
	Note: accept $\binom{n}{r}$ as alternative notation for ${}^{n}C_{r}$ throughout				
(b)	$\left(a+\frac{b}{2}\right)^{8} = \left[\frac{1}{2}(2a+b)\right]^{8} = \frac{1}{256}(2a+b)^{8}$	B1 – cso The value of k must be clearly obtained and not just stated	B1	(1)	
(c)	$\frac{\frac{1}{256} \left(256a^8 + 1024a^7b + 1792a^6b^2 + 1792a^5b^3 +\right)}{4ab}$				
	$\frac{1}{1024ab} \left(256a^8 + 1024a^7b + 1792a^6b^2 + 1792a^5b^3 + \dots \right)$	M1 – correct method using (b)	M1		
	$= \frac{256a^8}{1024ab} + \frac{1024a^7b}{1024ab} + \frac{1792a^6b^2}{1024ab} + \frac{1792a^5b^3}{1024ab} + \dots$	A1ft – correct expansion unsimplified	A1		
	$\frac{-a'b^{-1} + a^{\circ} + \frac{-}{4}a^{\circ}b + \frac{-}{4}a^{\circ}b^{2} + \dots}{4}a^{\circ}b^{2} + \dots$	A1 – cao	A1	(3)	
		Total	9	(-)	

3		1					
(a)	<i>x</i>	2	3	4	5	B2 – correct values for x	B2
	У	2.4142	1.3660	1	0.8090	and y shown in a table or	
						implied (B1 for one	
						correct value)	D1
	$h = \frac{5}{2}$	$\frac{-2}{}=1$				BI - correct value for the height of each strip	BI
	-	3				height of each strip	
		1	10 . 0.0000	$\sim \alpha (1$	2((0,1)]	M1 – attempts to apply the	M1
	: Area	$a \approx \frac{-1}{2}$	42 ± 0.8090)+2(1)	.3660+1)	trapezium rule using their	
						values	
						AIII - correct expression	A1
						It of their values	
	$\approx \frac{1}{2} (7)$.9552)					
	Z						
	≈ 3.98					A1 – cao	A1
	0.70						(6)
(b)	τ. •	,· ,				D1 ()	D1
(0)	it is an	overestimate				BI – overestimate	RI
	because	e the trapezia	are above th	e curv	e	B1 – <i>idea that</i> the trapezia	B1
		1				will be above the curve.	
						Award this mark if	
						candidates draw a diagram	
						to illustrate this	(2)
						Total	8

4 (a)	$x^2 + (y-5)^2 = 5^2$		B1 – LHS correct oe B1 – RHS correct oe	B1 B1 (2)
(b)	$x^{2} + (3x-5)^{2} = 25$ $x^{2} + 9x^{2} - 30x + 25 = 25$		M1 – correct method to find the coordinates of intersection	M1
	$x^2 - 3x = 0$ $x = 0, \ x = 3$		A1 – correct values of x	A1
	y = 3(3) = 9 $\therefore P(3,9)$		M1 – substitutes $x = 3$ to find the <i>y</i> coordinate of <i>P</i> A1 – <i>P</i> (3,9) cao	M1 A1 (4)
(c)	Method 1	Alternative 1	Accept other methods	
	$\cos\theta = \frac{5^2 + 5^2 - \left(3\sqrt{10}\right)^2}{2(5)(5)}$	$\theta = 180 - 2\left(90 - \tan^{-1}\frac{9}{3}\right)$	M1 – use of cosine rule or geometry	M1
	$=-\frac{4}{5}$	$\therefore \cos \theta = -\frac{4}{2}$	A1 – cao	A1
(d)	5 Method 1	5 Alternative 1	Accept other methods	(2)
	$\frac{1}{2} \times 5 \times 5 \times \sin \theta = 7.5$	$\frac{9\times3}{2} - \frac{(9-5)\times3}{2} = 7.5$	M1 - correct method A1 - 7.5	M1 A1 (2)
(e)	Area of sector = $\frac{\theta}{2}r^2 = \frac{\cos^2\theta}{2}$	$\frac{-1\left(-\frac{4}{5}\right)}{2}(5)^2 = 31.226$	M1 – correct method to work out the area of the sector (accept working in degrees) A1 – correct area for	M1 A1
	Area of $R = 31.226 7.5$	= 23.726 = 23.7	the sector M1 – area of sector – area of triangle A1 – cao, no ft Total	M1 A1 (4)
			i otal	- f

5 (a)	0.988	B1 – cao	B1 (1)
(b)	$U_4 = 34000 \times 0.988^4 = \text{\pounds}32000 \text{AWRT}$	M1 – expression in the form $34000 \times 0.988^{3/4}$, ft their (a). Power can be 3 or 4. A1 – cao (full answer = £32397.14)	M1 A1
(c)	$34000 \times 0.988^{N} > 30000$ $0.988^{N} > \frac{15}{17}$	M1 – forms an equation of the form $r^{N} = \frac{30000}{34000}$ ft their (a). r^{N-1} shows M0 here	M1
	$N\log(0.988) > \log\left(\frac{15}{17}\right)$	M1 – uses logarithms to find N	M1
	$:: N < \frac{\log\left(\frac{15}{17}\right)}{\log(0.988)} < 10.367$	A1 - N = 10 Do not accept decimals.	A1
	$\therefore N = 10$		
Note	Use of inequalities in not necessary in (c) – accept use of the when the inequality sign is used, it <u>must</u> be reversed to score	e equality sign. However, re the final A mark.	
(d) (i)	$U_N = a + (N-1)d$	M1 – use of $a+(N-1)d$,	M1
	=150+(10-1)(100)=1050	A1ft – correct answer ft their (c)	A1 (2)
(ii)	Takings in year $1 = 34000 \times 150 = \text{\pounds}5100000$	B1 – cao	B1
	$34000 \times 0.988^{10} = \text{\pounds}30133.42$	M1 – calculates the price of the car in year N	M1
	Takings in year $N = \text{\pounds}31640000$	M1 – calculates the takings in year N	M1
	$\pounds 31640000 > \pounds 5100000$, hence there were more takings in the year N	A1 – correct answer and a justification	A1 (4)
(e)	(Very) effective because more individuals are buying the car each year / the takings increased / owtte	B1 – effective + an appropriate justification <u>in context</u>	B1 (1)
		Total	13

6 (a)	$\log_3(3b) + \log_9(b) = 2$	M1 – attempt to obtain an equation with one variable	M1
	Since $\log_3(x) = 2\log_9(x)$, $2\log_9(3b) + \log_9(b) = 2$	B1 – this principle seen anywhere (candidates may use the formula from the booklet to	B1
	$\log_9(9b^3) = 2$	obtain this) M1 – use of multiplication rule for	M1
	$9b^3 = 81 \rightarrow b = \sqrt[3]{9}$	logs M1 – removal of the logs A1 – correct exact value for <i>b</i>	M1 A1
	$\therefore a = 3\sqrt[3]{9}$	M1 – substitutes <i>their b</i> into an equation to find	M1
		A1 – correct exact value for a	A1
		Total	7
ALT	If candidates use the formula to change the base, sight of $\log_3(3b) = \frac{\log_9(3b)}{\log_9 3} = 2\log_9(3b)$ is <i>all</i> needed for B1 . Candidates may then, alternatively, change the $\log_9 b$ term to $\frac{1}{2}\log_3 b$, which should also be accepted. Note also that candidates may make a substitution for <i>b</i> at the beginning of the question – although this is likely to prove tougher algebraically.		

7 (a) (b)	$\frac{dy}{dx} = 3x^2 - 6x + 27$ If increasing, $\frac{dy}{dx} > 0$ $3x^2 - 6x + 27 = 3\left(x^2 - 2x\right)$ $= 3\left[(x - 1)^2 - 1 + \frac{27}{3}\right] > 0$	M1 – correct method to differentiate one term A1 – correct derivative B1 – idea that, if increasing, $\frac{dy}{dx} > 0$ M1 – completes the square to show that <i>their</i> $\frac{dy}{dx} > 0$ A1 – correct proof	M1 A1 (2) B1 M1 A1 (3)	
(c)	If there are no stationary has no solutions.	points, $3x^2 - 6x + 27 = 0$	B1 – idea that, if there are no stationary points, there is no value of x such that $\frac{dy}{dx} = 0$	B1
	Method 1:	Method 2:	ил	
	$(x-1)^2 = -8$	$6^2 - 4(3)(27) = -288 < 0$	M1 – correct method to show the derivative has no solutions	M1
	$x-1 \neq \sqrt{-8}$ Hence, the curve has no stationary points	Since $b^2 - 4ac < 0$, the curve has no stationary points	A1 – correctly shows and justifies that the derivative has no solutions	A1 (3)
(d)	y 1	/	B1 – correct shape (see note)	B1
	$ \begin{array}{c c} & & & & \mathbf{B1} - \text{passes through} \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & $			B1 (2)
Note	Ideally, the sketches should	be <i>slightly</i> curvaceous Althous	h, due to scales, you	
1.000	should be prepared to accept completely straight lines here. Do not , however, accept sketches that imply the presence of stationary points or points of inflection.			
			Total	7

8 (a)	$\sin\theta - \frac{1}{\sin\theta} \equiv \frac{\sin^2\theta - 1}{\sin\theta}$	M1 – use of a common denominator	M1
	$\equiv \frac{-\cos^2\theta}{\sin\theta} \equiv -\cos\theta \times \frac{\cos\theta}{\sin\theta}$	$\mathbf{M1} - \text{use of} \\ 1 - \sin^2 \theta = \cos^2 \theta$	M1
	$\equiv -\cos\theta \times \frac{1}{\tan\theta} = -\frac{\cos\theta}{\tan\theta}$	A1 – correct proof showing all intermediate steps	A1 (3)
(b)	$\tan^2 2x = \frac{2}{\cos 2x} \left(-\frac{\cos 2x}{\tan 2x} \right) + \tan^2 2x - 4$	B1 – correct LHS M1 – use of (a) to simplify the RHS	B1 M1
	$4 = -\frac{2}{\tan 2x}$		
	$\tan 2x = -\frac{1}{2}$	A1 – correct simplification	A1
	$2x = \tan^{-1}\left(-\frac{1}{2}\right) = -0.463$	$\mathbf{dM1} - 2x = \tan^{-1}(n)$	M1
	$2x = \pi - 0.463, \ 2\pi - 0.463,$	ddM1 – attempt to find values of $2x$ between 0	M1
	and	and 4π	
	$2\pi + (\pi - 0.463), 2\pi + (2\pi - 0.463)$		
	2 <i>x</i> = 2.678, 5.820, 8.961, 12.103	ddM1 – divides at least one of their values of $2x$ by 2	M1
	<i>x</i> = 1.3, 2.9, 4.5, 6.1 AWRT	A1 – correct values of x	A1 (7)
		Total	10

Notes on alternative methods:

This mark scheme may feature some alternative solutions, but, of course, at this level, there is likely to be questions that have many others. Where alternative methods are used, you should award full marks **if the method is correct** (do **not** award full marks for methods that coincidentally lead to the right answer). If the method is *not* correct, then you should aim to mark it by being as faithful to the original scheme as you can and ensure that you award the same amount of marks for the same amount of *progress* in a question as you would award using the general scheme.