mark

 schemePractice Paper C: Core Mathematics 2

Question	General Scheme		Marks
1	$\int_{1}^{3}\left(\frac{2+3 \sqrt{x}}{x^{2}}\right) d x$	B1: sets up a correct integral to evaluate (seen anywhere).	B1
	$\int_{1}^{3}\left(\frac{2+3 \sqrt{x}}{x^{2}}\right) d x=\left[-\frac{2}{x}-\frac{6}{\sqrt{x}}\right]_{1}^{3}$	M2: correct method to find the general integral (see note) A1: correct general integral. Constant not needed	$\begin{array}{\|l} \hline \text { M2 } \\ \text { A1 } \end{array}$
Note	Award M1 for one error in working and M0 for more than one error.		
	$\begin{aligned} & {\left[-\frac{2}{x}-\frac{6}{\sqrt{x}}\right]_{1}^{3}=\left(-\frac{2}{3}-\frac{6}{\sqrt{3}}\right)-\left(-\frac{2}{1}-\frac{6}{\sqrt{1}}\right)} \\ & =-\frac{2}{3}-\frac{6}{\sqrt{3}}+8=\frac{22}{3}-2 \sqrt{3} \end{aligned}$	M1: correct substitution of limits A1: cao	M1 A1
		Total	6

Question Number	General Scheme	Marks
2	$\overbrace{\underbrace{}_{{ }^{5} C_{0}(1)^{5}(x)^{0}}+{ }^{5} C_{1}(1)^{4} x+{ }^{5} C_{2}(1)^{3}(x)^{2}+{ }^{5} C_{3}(1)^{2}(x)^{3}+{ }^{5} C_{4}(1)^{1}(x)^{4}+{ }^{5} C_{5}(1)^{0}(x)^{5}}^{5}$ M1: one term correctly expressed (need not be the first term) M1: a complete expansion with all terms containing coefficients and the powers on each term adding to 5 . Accept $\binom{n}{r}$ in replacement for ${ }^{n} C_{r}$. A1: a correct unsimplified expansion. $\therefore(1+x)^{5}=1+5 x+10 x^{2}+10 x^{3}+5 x^{4}+x^{5}$ A1: a correct simplified expansion.	M1 M1 A1 A1
	$1+x=0.0172 \rightarrow x=-0.9828$ M1: attempts to find the value of x that will compute $(0.0172)^{5}$.	M1
	$\begin{aligned} & (0.0172)^{5}=1+5(-0.9828)+10(-0.9828)^{2}+\ldots+(-0.9828)^{5} \\ & \therefore(0.0172)^{5} \simeq 1.51 \times 10^{-9} \end{aligned}$ M1 - correctly substitutes their x into their binomial expansion A1 - cso	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
	Total	7

Question Number	General Scheme		Marks
4	$\log _{3}\left(x^{2}-5 x+6\right)-\log _{3}\left(2 x^{2}-26 x+60\right)=2$ $\log _{3}\left(\frac{x^{2}-5 x+6}{2 x^{2}-26 x+60}\right)=2$	M1: use of the rule that $\log a-\log b=\log \left(\frac{a}{b}\right)$	M1
	$\begin{aligned} & \log _{3}\left(\frac{x^{2}-5 x+6}{2 x^{2}-26 x+60}\right)=2 \\ & \frac{x^{2}-5 x+6}{2 x^{2}-26 x+60}=9 \end{aligned}$	M1: correct attempt to obtain an equation independent of logs A1: correct working	M1 A1
	$\begin{aligned} & x^{2}-5 x+6=9\left(2 x^{2}-26 x+60\right) \\ & (x-2)(x-3)-18(x-3)(x-10)=0 \\ & (x-3)(x-2-18 x+180)=0 \\ & (x-3)(178-17 x)=0 \end{aligned}$	M1: a valid attempt to solve the resultant quadratic	M1
	$\therefore x=3, x=\frac{178}{17}$	A1: both solutions	A1
		Total	5

\begin{tabular}{|c|c|c|c|}
\hline Question \& \multicolumn{2}{|c|}{General Scheme} \& Marks \\
\hline \multirow[t]{7}{*}{5 (a)} \& \[
\frac{d y}{d x}=2 x^{3}-128 x
\] \& B1: correct derivative \& B1 \\
\hline \& \(2 x^{3}-128 x=0\) \& M1: sets their \(\frac{d y}{d x}=0\) \& M1 \\
\hline \& \[
\begin{aligned}
\& 2 x\left(x^{2}-64\right)=0 \\
\& 2 x(x-8)(x+8)=0 \\
\& x=0, x=8, x=-8
\end{aligned}
\] \& \begin{tabular}{l}
M1: correct method to find \(x\) \\
A1: obtains the correct values of \(x\)
\end{tabular} \& \begin{tabular}{l}
A1 \\
(4)
\end{tabular} \\
\hline \& \[
\frac{d^{2} y}{d x^{2}}=6 x^{2}-128
\] \& B1ft: correct second derivative \& B1ft \\
\hline \& \[
\left|\frac{d^{2} y}{d x^{2}}\right|_{x=. . .}=\ldots
\] \& M1: evaluates the second derivative at their stationary points \& M1 \\
\hline \& \begin{tabular}{l}
Maximum at \(x=0\), as \(\left.\frac{d^{2} y}{d x^{2}}\right|_{x=0}<0\) \\
Minimum at \(x= \pm 8\), as \(\left.\frac{d^{2} y}{d x^{2}}\right|_{x= \pm 8}>0\)
\end{tabular} \& A1ft: award when the nature of the stationary points is correctly determined and an explicit justification. Ft of their (a) \& A1ft

(3)

\hline \& \& Total \& 7

\hline
\end{tabular}

Question	General Scheme		Marks
(a) (b)	Either $x+3$ or $x-1$ or $2 x-1$	M1: attempts to substitute values into the given expression A1: one correct factor	M1 A1 (2)
	$\begin{aligned} & x - 1 \longdiv { 2 x ^ { 2 } + 5 x - 3 } \\ & \frac{2 x^{3}+3 x^{2}-8 x+3}{5 x^{2}} \\ & \frac{5 x^{2}-8 x}{-3 x+3} \\ & \frac{-3 x+3}{0} \end{aligned}$	M2: uses their factor from (a) to find other factors by long division or inspection or uses the factor theorem. A1: correct resultant quadratic from their division	M2 A1
Note	Award M1 for one error in working and M0 for more than one error.		
(c)	$\begin{aligned} & 2 x^{3}+3 x^{2}-8 x+3=(x-1)\left(2 x^{2}+5 x-3\right) \\ & =(x-1)(a x+b)(x+c) \\ & =(x-1)(2 x-1)(x+3) \end{aligned}$	M1: factorises their quadratic to obtain two linear factors A1: correct factors	M1 A1 (5)
	$\begin{aligned} & 4 \sin ^{3} 2 \theta+6 \sin ^{2} 2 \theta-16 \sin 2 \theta+6=0(\div 2) \\ & 2 \sin ^{3} 2 \theta+3 \sin ^{2} 2 \theta-8 \sin 2 \theta+3=0 \\ & (\sin 2 \theta-1)(2 \sin 2 \theta-1)(\sin 2 \theta+3)=0 \end{aligned}$	B1ft: correct use of their (b) to factorise the trigonometric cubic	B1
	$\sin 2 \theta=1, \sin 2 \theta=\frac{1}{2}, \sin 2 \theta \neq-3$		

	$2 \theta=\sin ^{-1}(1)$ $2 \theta=\sin ^{-1}\left(\frac{1}{2}\right)$ $=\frac{\pi}{2}$ $=\frac{\pi}{6}, \pi-\frac{\pi}{6}$	M1: attempts to find the principal values of both equations M1: $\pi-$ their $\sin ^{-1}\left(\frac{1}{2}\right)$	M1 M1
	$\begin{array}{l\|l} =2 \pi+\frac{\pi}{2} & =2 \pi+\frac{\pi}{6}, \\ 2 \pi+\left(\text { their } \pi-\frac{\pi}{6}\right) \end{array}$	M1: a clear method to find the additional values for $2 \theta \geq 2 \pi$	M1
	$\begin{aligned} & 2 \theta=\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}, \frac{5 \pi}{2}, \frac{13 \pi}{6}, \frac{17 \pi}{6} \\ & \therefore \theta=\frac{\pi}{12}, \frac{\pi}{4}, \frac{5 \pi}{12}, \frac{5 \pi}{4}, \frac{13 \pi}{12}, \frac{17 \pi}{12} \end{aligned}$	M1: divides their values of 2θ by 2 . Condone arithmetic slips, provided the intention is clear A1: all values of θ given. Ignore additional values of θ outside of the given range, but if they are incorrect, award A0.	M1 A1 (6)
		Total	13

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} \& \multicolumn{3}{|c|}{General Scheme} \& Marks \\
\hline \multirow[t]{8}{*}{8

(a)

(b)

(c)} \& \multicolumn{2}{|l|}{Gradient of the normal at $P=\frac{4-7}{2-6}=\frac{3}{4}$} \& | M1: correct method to work out the gradient of the normal at P |
| :--- |
| A1: $\frac{3}{4}$ | \& M1

A1

\hline \& \multicolumn{2}{|l|}{\therefore Gradient of $T=-\frac{4}{3}$} \& B1ft: gradient of

$$
T=-\frac{1}{m_{\text {their normal }}}
$$ \& B1

\hline \& \multicolumn{3}{|l|}{| $\therefore y-7=-\frac{4}{3}(x-6)$ | M1: correct method to |
| :--- | :--- |
| | work out the equation of |
| T | |
| | A1: equation of T oe |} \& | M1 |
| :--- |
| A1 (5) |

\hline \& \multicolumn{3}{|l|}{| B1: circle with centre in the correct quadrant and radius 5 correctly drawn + tangent drawn at the point $(6,7)$ |
| :--- |
| B1: correct illustration that the tangent does not intersect the circle again |} \& | B1 |
| :--- |
| B1 |
| (2) |

\hline \& \multicolumn{2}{|l|}{$$
\begin{aligned}
& (x-2)^{2}+\left(-\frac{4}{3} x+15-4\right)^{2}=5^{2} \\
& (x-2)^{2}+\left(-\frac{4}{3} x+11\right)^{2}=5^{2}
\end{aligned}
$$} \& M1: attempts to find coordinates of intersection \& M1

\hline \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{$$
\begin{aligned}
& x^{2}-4 x+4-\frac{16}{9} x^{2}-\frac{88}{3}+121=25 \\
& 9 x^{2}-36 x+36+16 x^{2}-264 x+1089=225 \\
& \therefore 25 x^{2}-300 x+900=0 \\
& \therefore x^{2}-12 x+36=0
\end{aligned}
$$}} \& M1: a good attempt to form 3TQ \& M1

\hline \& \& \& A1: correct 3TQ oe \& A1

\hline \& | $\therefore(x-6)^{2}=0$ |
| :--- |
| \therefore There is only one intersection between C and T | \& | $\begin{aligned} & b^{2}-4 a c=144-144 \\ & =0 \end{aligned}$ |
| :--- |
| \therefore There is only one intersection between | \& M1: a valid method to show that there is only one intersection A1: cso including a conclusive statement \& M1

A1

\hline
\end{tabular}

	when $x=6$	C and T when $x=6$	Total	$\mathbf{1 2}$
	Some candidates may attempt part (a) using implicit differentiation. That method is shown here: $2(x-2)+2(y-4) \frac{d y}{d x}=0$ M1			
ALT	$\frac{d y}{d x}=-\frac{x-2}{y-4}$ A1 $\left.\frac{d y}{d x}\right\|_{x=6, y=7}=-\frac{4}{3}$			

Question Number	General Scheme		Marks
9 (a)	$\begin{aligned} & =\frac{3 \cdot 2^{x} \cdot 12^{2 x}-5 \cdot 4^{x} \cdot 6^{2 x}}{2^{x} \cdot 6^{2 x}} \\ & =\frac{3 \cdot 2^{x} \cdot(6 \cdot 2)^{2 x}}{2^{x} \cdot 6^{2 x}}-\frac{5 \cdot(2 \cdot 2)^{x} \cdot 6^{2 x}}{2^{x} \cdot 6^{2 x}} \\ & =\frac{3 \cdot 2^{x} \cdot 6^{2 x} \cdot 2^{2 x}}{2^{x} \cdot 6^{2 x}}-\frac{5 \cdot 2^{x} \cdot 2^{x}}{2^{x}} \\ & =3 \cdot 2^{2 x}-5 \cdot 2^{x} \end{aligned}$	M1: one attempt to reduce a term into base 2 M1: all terms reduced into base 2, where appropriate A1: cao	M1 M1 A1 (3)
(b)	$\begin{aligned} & 3 \cdot 2^{2 x}-5 \cdot 2^{x}-2=0 \\ & \left(3 \cdot 2^{x}+1\right)\left(2^{x}-2\right)=0 \\ & 3 \cdot 2^{x}+1 \neq 0, \text { since } \ln x \geq 0 \\ & \therefore 2^{x}=2 \\ & x=1 \end{aligned}$	M1: correct method to solve 3TQ (either directly or by substitution) B1: clear or implied rejection of the $3 \cdot 2^{x}+1$ factor A1: $x=1$	M1 B1 A1 (3)
		Total	6

