## mark scheme

Practice Paper C : Core Mathematics 2



| Question<br>Number | General Scheme                                                                                                                                             |                                                                                                   | Marks    |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------|
| 1                  | $\int_{1}^{3} \left(\frac{2+3\sqrt{x}}{x^2}\right) dx$                                                                                                     | <b>B1:</b> sets up a correct integral to evaluate (seen anywhere).                                | B1       |
|                    | $\int_{1}^{3} \left(\frac{2+3\sqrt{x}}{x^2}\right) dx = \left[-\frac{2}{x} - \frac{6}{\sqrt{x}}\right]_{1}^{3}$                                            | M2: correct method to find<br>the general integral (see<br>note)<br>A1: correct general integral. | M2<br>A1 |
| Note               | Award M1 for one error in working and                                                                                                                      | Constant <u>not</u> needed<br>M0 for more than one error.                                         |          |
|                    | $\left[-\frac{2}{x} - \frac{6}{\sqrt{x}}\right]_{1}^{3} = \left(-\frac{2}{3} - \frac{6}{\sqrt{3}}\right) - \left(-\frac{2}{1} - \frac{6}{\sqrt{1}}\right)$ | M1: correct substitution of limits                                                                | M1       |
|                    | $= -\frac{2}{3} - \frac{6}{\sqrt{3}} + 8 = \frac{22}{3} - 2\sqrt{3}$                                                                                       | <b>A1:</b> cao                                                                                    | A1       |
|                    |                                                                                                                                                            | Total                                                                                             | 6        |

| Question<br>Number | General Scheme                                                                                                                                                                                                                                                                                                                               |    |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2                  | $\underbrace{\underbrace{{}^{5}C_{0}(1)^{5}(x)^{0}}_{M1} + {}^{5}C_{1}(1)^{4}x + {}^{5}C_{2}(1)^{3}(x)^{2} + {}^{5}C_{3}(1)^{2}(x)^{3} + {}^{5}C_{4}(1)^{1}(x)^{4} + {}^{5}C_{5}(1)^{0}(x)^{5}}_{M1}}$                                                                                                                                       |    |
|                    | M1: one term correctly expressed (need not be the first term)<br>M1: a complete expansion with all terms containing coefficients and the<br>powers on each term adding to 5. Accept $\binom{n}{r}$ in replacement for ${}^{n}C_{r}$ .<br>A1: a correct unsimplified expansion.<br>$\therefore (1+x)^{5} = 1+5x+10x^{2}+10x^{3}+5x^{4}+x^{5}$ |    |
|                    |                                                                                                                                                                                                                                                                                                                                              |    |
|                    | A1: a correct simplified expansion.                                                                                                                                                                                                                                                                                                          |    |
|                    | $1 + x = 0.0172 \rightarrow x = -0.9828$ M1: attempts to find the value of x that will compute $(0.0172)^5$ .                                                                                                                                                                                                                                | M1 |
|                    | $(0.0172)^{5} = 1 + 5(-0.9828) + 10(-0.9828)^{2} + \dots + (-0.9828)^{5}$ $\therefore (0.0172)^{5} \approx 1.51 \times 10^{-9}$                                                                                                                                                                                                              |    |
|                    | M1 – correctly substitutes <i>their</i> $x$ into <i>their</i> binomial expansion<br>A1 – cso                                                                                                                                                                                                                                                 |    |
|                    | Total                                                                                                                                                                                                                                                                                                                                        | 7  |

| Question | General Scheme                                                                                                     |                                                                     | Marks |
|----------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------|
| Number   |                                                                                                                    |                                                                     |       |
| 4        | $\log_3(x^2 - 5x + 6) - \log_3(2x^2 - 26x + 60) = 2$ $\log_3\left(\frac{x^2 - 5x + 6}{2x^2 - 26x + 60}\right) = 2$ | M1: use of the rule that<br>$\log a - \log b = \log(\frac{a}{b})$   | M1    |
|          | $\log_3\left(\frac{x^2 - 5x + 6}{2x^2 - 26x + 60}\right) = 2$                                                      | M1: correct attempt to<br>obtain an equation<br>independent of logs | M1    |
|          | $\frac{x^2 - 5x + 6}{2x^2 - 26x + 60} = 9$                                                                         | A1: correct working                                                 | A1    |
|          | $x^{2}-5x+6 = 9(2x^{2}-26x+60)$<br>(x-2)(x-3)-18(x-3)(x-10) = 0<br>(x-3)(x-2-18x+180) = 0<br>(x-3)(178-17x) = 0    | M1: a valid attempt to<br>solve the resultant<br>quadratic          | M1    |
|          | $\therefore x = 3, x = \frac{178}{17}$                                                                             | A1: both solutions                                                  | A1    |
|          |                                                                                                                    | Total                                                               | 5     |

| Question<br>Number | General Scheme                                                      |                                                                            | Marks     |
|--------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------|-----------|
| <b>5</b> (a)       | $\frac{dy}{dx} = 2x^3 - 128x$                                       | B1: correct derivative                                                     | B1        |
|                    | $2x^3 - 128x = 0$                                                   | <b>M1:</b> sets their $\frac{dy}{dx} = 0$                                  | M1        |
|                    | $2x(x^{2}-64) = 0$<br>2x(x-8)(x+8) = 0<br>x = 0, x = 8, x = -8      | <b>M1:</b> correct method to find $x$                                      | M1        |
|                    | 2x(x-8)(x+8) = 0<br>x = 0, x = 8, x = -8                            | A1: obtains the correct values of <i>x</i>                                 | A1<br>(4) |
| (b)                | $\frac{d^2y}{dx^2} = 6x^2 - 128$                                    | B1ft: correct second derivative                                            | B1ft      |
|                    | $\left. \frac{d^2 y}{dx^2} \right _{x=\dots} = \dots$               | M1: evaluates the second derivative at <i>their</i> stationary points      | M1        |
|                    | Maximum at $x = 0$ , as $\frac{d^2 y}{dx^2}\Big _{x=0} < 0$         | A1ft: award when the<br>nature of the stationary<br>points is correctly    | A1ft      |
|                    | Minimum at $x = \pm 8$ , as $\frac{d^2 y}{dx^2}\Big _{x=\pm 8} > 0$ | determined <b>and</b> an explicit<br>justification. Ft of <i>their</i> (a) | (3)       |
|                    |                                                                     | Total                                                                      | 7         |

| Question<br>Number | General Scheme                                                                                                                                                                                               |                 |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| <b>6</b> (a)       | $S_n = \frac{a(1-r^n)}{1-r}$ B1: cao                                                                                                                                                                         | B1 (1)          |
| (b)                | $S_{\infty} = \frac{2a}{1 - \frac{1}{s}}$ $= \frac{2a}{\frac{s - 1}{s}} = \frac{2as}{s - 1}$ B1: use of $\frac{1}{s}$ as common ratio<br>M1: correct substitution<br>A1: correct expression for $S_{\infty}$ | B1<br>M1<br>A1  |
| (c)                | $\frac{a(1-r^n)}{1-r} = 4\left(\frac{2as}{s-1}\right)$ M1: correct expression<br>formed                                                                                                                      | (3)<br>M1       |
|                    | $\frac{1-r^{n}}{1-r} = \frac{8s}{s-1}$ $(s-1)(1-r^{n}) = 8s(1-r)$ $s-sr^{n}-1+r^{n}-8s+8rs=0$ $s-sr^{n}-8s+8rs=1-r^{n}$ M1: attempts to make <i>s</i> the subject                                            | M1              |
|                    | $s(1-r^{n}-8+8r) = 1-r^{n}$ $\therefore s = \frac{1-r^{n}}{1-r^{n}-8+8r}$ M1: factorises s out A1: correct expression of s in terms of r.                                                                    | M1<br>A1<br>(4) |
|                    | Total                                                                                                                                                                                                        | 8               |

| Question<br>Number | General Scheme                                                                                                                                                                                   |                                                                                                                                 | Marks     |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------|
| 7<br>(a)           | Either $x+3$                                                                                                                                                                                     | M1: attempts to substitute values into the given expression                                                                     | M1        |
|                    | or $x-1$                                                                                                                                                                                         | A1: one correct factor                                                                                                          | A1        |
|                    | or $2x-1$                                                                                                                                                                                        |                                                                                                                                 | (2)       |
| (b)                | $ \frac{2x^{2} + 5x - 3}{x - 1)2x^{3} + 3x^{2} - 8x + 3} \\ \frac{2x^{3} - 2x^{2}}{5x^{2} - 8x} \\ \frac{5x^{2} - 8x}{5x^{2} - 5x} $                                                             | M2: uses <i>their</i> factor from<br>(a) to find other factors by<br>long division or inspection<br>or uses the factor theorem. | M2        |
|                    | $\frac{5x - 5x}{-3x + 3}$ $\frac{-3x + 3}{0}$                                                                                                                                                    | A1: correct resultant<br>quadratic from <i>their</i><br>division                                                                | A1        |
| Note               | Award M1 for one error in working and M0 for more than one error.                                                                                                                                |                                                                                                                                 |           |
|                    | $2x^{3} + 3x^{2} - 8x + 3 = (x - 1)(2x^{2} + 5x - 3)$ $= (x - 1)(ax + b)(x + c)$ $= (x - 1)(2x - 1)(x + 3)$                                                                                      | M1: factorises <i>their</i><br>quadratic to obtain two<br>linear factors<br>A1: correct factors                                 | M1<br>A1  |
| (c)                | $4\sin^{3}2\theta + 6\sin^{2}2\theta - 16\sin 2\theta + 6 = 0  (\div 2)$ $2\sin^{3}2\theta + 3\sin^{2}2\theta - 8\sin 2\theta + 3 = 0$ $(\div 2) = 1)(2\div 2\theta - 1)(2\div 2\theta - 2) = 0$ | <b>B1ft:</b> correct use of <i>their</i> (b) to factorise the                                                                   | (5)<br>B1 |
|                    | $(\sin 2\theta - 1)(2\sin 2\theta - 1)(\sin 2\theta + 3) = 0$ $\sin 2\theta = 1, \ \sin 2\theta = \frac{1}{2}, \ \sin 2\theta \neq -3$                                                           | trigonometric cubic                                                                                                             |           |

| $2\theta = \sin^{-1}(1)$ $= \frac{\pi}{2}$                                           | $2\theta = \sin^{-1}\left(\frac{1}{2}\right)$ $= \frac{\pi}{6} , \pi - \frac{\pi}{6}$ | M1: attempts to find the<br>principal values of <b>both</b><br>equations<br>M1: $\pi$ – their $\sin^{-1}\left(\frac{1}{2}\right)$                | M1<br>M1 |     |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|
| $=2\pi+\frac{\pi}{2}$                                                                | $= 2\pi + \frac{\pi}{6},$ $2\pi + \left(\text{their } \pi - \frac{\pi}{6}\right)$     | <b>M1:</b> a clear method to find<br>the additional values for<br>$2\theta \ge 2\pi$                                                             | M1       |     |
| $2\theta = \frac{\pi}{6},  \frac{\pi}{2},  \frac{5\pi}{6},  \frac{5\pi}{2}$          | $, \frac{13\pi}{6}, \frac{17\pi}{6}$                                                  | <b>M1:</b> divides <i>their</i> values<br>of $2\theta$ by 2. Condone<br>arithmetic slips, provided<br>the intention is clear                     | M1       |     |
| $\therefore \theta = \frac{\pi}{12}, \frac{\pi}{4}, \frac{5\pi}{12}, \frac{5\pi}{4}$ | $\frac{\pi}{12}, \frac{13\pi}{12}, \frac{17\pi}{12}$                                  | A1: all values of $\theta$ given.<br>Ignore additional values of $\theta$ outside of the given<br>range, but if they are<br>incorrect, award A0. | A1       |     |
|                                                                                      |                                                                                       |                                                                                                                                                  |          | (6) |
|                                                                                      |                                                                                       | Total                                                                                                                                            | 13       |     |

| Question<br>Number |                                                                                                                                                                                                                           |                                            | Marks                                                                                            |                 |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------|
| <b>8</b> (a)       | Gradient of the norm                                                                                                                                                                                                      | hal at $P = \frac{4-7}{2-6} = \frac{3}{4}$ | M1: correct method to<br>work out the gradient of<br>the normal at <i>P</i><br>A1: $\frac{3}{4}$ | M1<br>A1        |
|                    | $\therefore$ Gradient of $T = -$                                                                                                                                                                                          | $-\frac{4}{3}$                             | <b>B1ft:</b> gradient of<br>$T = -\frac{1}{m_{\text{their normal}}}$                             | B1              |
|                    | $\therefore y - 7 = -\frac{4}{3}(x - 6)$                                                                                                                                                                                  |                                            | M1: correct method towork out the equation of $T$ A1: equation of $T$ oe                         | M1<br>A1<br>(5) |
| (b)                | <ul> <li>B1: circle with centre in the correct quadrant and radius 5 correctly drawn + tangent drawn at the point (6,7)</li> <li>B1: correct illustration that the tangent does not intersect the circle again</li> </ul> |                                            | B1<br>B1<br>(2)                                                                                  |                 |
|                    | $(x-2)^{2} + \left(-\frac{4}{3}x + 15\right)^{2}$ $(x-2)^{2} + \left(-\frac{4}{3}x + 11\right)^{2}$                                                                                                                       | $(5-4)^2 = 5^2$                            | M1: attempts to find<br>coordinates of<br>intersection                                           | M1              |
| (c)                | $x^2 - 4x + 4 - \frac{16}{9}x^2 - $                                                                                                                                                                                       |                                            | M1: a good attempt to form 3TQ                                                                   | M1              |
|                    | $\therefore 25x^2 - 300x + 900$                                                                                                                                                                                           | = 0                                        |                                                                                                  |                 |
|                    | $\therefore x^2 - 12x + 36 = 0$                                                                                                                                                                                           |                                            | A1: correct 3TQ oe                                                                               | A1              |
|                    | $\therefore (x-6)^2 = 0$<br>$\therefore \text{ There is only}$                                                                                                                                                            | $b^2 - 4ac = 144 - 144$<br>= 0             | M1: a valid method to<br>show that there is only<br>one intersection<br>A1: cso including a      | M1<br>A1        |
|                    | one intersection between $C$ and $T$                                                                                                                                                                                      | : There is only one intersection between   | conclusive statement                                                                             |                 |

|                                                           | when $x = 6$                                                        | C and T when $x = 6$                   |                                  | (5) |
|-----------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------|----------------------------------|-----|
|                                                           |                                                                     |                                        | Total                            | 12  |
|                                                           | Some candidates ma<br>That method is show                           | y attempt part (a) using in<br>n here: | nplicit differentiation.         |     |
|                                                           | $2(x-2)+2(y-4)\frac{dy}{dx}=0$ M1                                   |                                        |                                  |     |
| <b>ALT</b> $\frac{dy}{dx} = -\frac{x-2}{y-4} \mathbf{A1}$ |                                                                     |                                        |                                  |     |
|                                                           | $\left. \frac{dy}{dx} \right _{x=6,y=7} = -\frac{4}{3} \mathbf{A1}$ |                                        |                                  |     |
|                                                           | Then the rest is as th <b>A1.</b> Ascribe the mar                   | -                                      | ase, the final <b>B1</b> becomes |     |

| Question<br>Number | General Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| 9                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| (a)                | $=\frac{3 \cdot 2^{x} \cdot 12^{2x} - 5 \cdot 4^{x} \cdot 6^{2x}}{2^{x} \cdot 6^{2x}}$ M1: one att<br>term into ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tempt to reduce a M1 ase 2            |
|                    | $2^x \cdot 6^{2x}$ $2^x \cdot 6^{2x}$ base 2, when                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ns reduced into<br>ere appropriate M1 |
|                    | $=\frac{3\cdot 2^{x}\cdot 6^{2x}\cdot 2^{2x}}{2^{x}\cdot 6^{2x}}-\frac{5\cdot 2^{x}\cdot 2^{x}}{2^{x}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |
|                    | $= 3 \cdot 2^{2x} - 5 \cdot 2^x \qquad \qquad \textbf{A1: cao}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1 (3)                                |
| (b)                | $3 \cdot 2^{2x} - 5 \cdot 2^{x} - 2 = 0$<br>$(3 \cdot 2^{x} + 1)(2^{x} - 2) = 0$<br>M1: corrections of the solve 3TQ or by substitutions of the solution of t | (either directly                      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | The $3 \cdot 2^x + 1$ A1              |
|                    | $\therefore 2^{x} = 2$ $x = 1$ factor A1: x = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (3)                                   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Total 6                               |