

Paper Reference(s)
6664
Edexcel GCE

Core Mathematics C2

Examiner's use only Advanced Subsidiary Mock Paper

Time: 1 hour 30 minutes

$\begin{array}{lll}\text { Materials required for examination } & & \text { Items included with question papers } \\ \text { Mathematical Formulae } & \mathrm{Nil}\end{array}$
Nil

Candidates may use any calculator EXCEPT those with the facility for symbolic algebra, differentiation and/or integration. Thus candidates may NOT use calculators such as the Texas Instruments TI 89, TI 92, Casio CFX 9970G, Hewlett Packard HP 48G.

Instructions to Candidates

In the boxes above, write your cente number, candidate number, your surname, initials and signature. You must write your answer for each question in the space following the question. If you need more space to complete your answer to any question, use additional answer sheets.
When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'mathematical Formulae and Statistical Tables' is provided.
Full marks may be obtained for answers to ALL questions.
This paper has ten questions.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled.
You must show sufficient working to make your methods clear to the examiner.
Answers without working may gain no credit.

Question	$\begin{aligned} & \text { Leave } \\ & \text { Blank } \end{aligned}$
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
Total	

Turn over
Edexcel
Success through qualifications

1. $\mathrm{f}(x)=2 x^{3}-x^{2}+p x+6$,
where p is a constant.
Given that $(x-1)$ is a factor of $\mathrm{f}(x)$, find
(a) the value of p,
(2)
(b) the remainder when $\mathrm{f}(x)$ is divided by $(2 x+1)$.
\qquad
2. (a) Find

$$
\int\left(3+4 x^{3}-\frac{2}{x^{2}}\right) \mathrm{d} x
$$

(b) Hence evaluate $\int_{1}^{2}\left(3+4 x^{3}-\frac{2}{x^{2}}\right) \mathrm{d} x$.
(2)
\qquad
3.

Figure 1

Figure 1 shows a logo $A B D$.
The logo is formed from triangle $A B C$. The mid-point of $A C$ is D and $B C=A D=D C=6 \mathrm{~cm}$. $\angle B C A=0.4$ radians. The curve $B D$ is an arc of a circle with centre C and radius 6 cm .
(a) Write down the length of the arc $B D$.
(b) Find the length of $A B$.
(c) Write down the perimeter of the logo $A B D$, giving your answer to 3 significant figures.
\qquad
4. Solve

$$
2 \log _{3} x-\log _{3}(x-2)=2, \quad x>2 .
$$

\qquad
\qquad \longrightarrow
\qquad
5. The second and fifth terms of a geometric series are 9 and 1.125 respectively.

For this series find

(a) the value of the common ratio,
(b) the first term,
(c) the sum to infinity.
\qquad
\qquad \longrightarrow
\qquad
5. continued
\qquad
\qquad
\qquad
\qquad
\qquad (1)
\qquad
6. The circle C, with centre A, has equation

$$
x^{2}+y^{2}-6 x+4 y-12=0 .
$$

(a) Find the coordinates of A.
(b) Show that the radius of C is 5 .

The points P, Q and R lie on C. The length of $P Q$ is 10 and the length of $P R$ is 3 .
(c) Find the length of $Q R$, giving your answer to 1 decimal place.
\qquad
6. continued
\qquad
\qquad
\qquad
\qquad
\qquad (1)
\qquad
7. The first four terms, in ascending powers of x, of the binomial expansion of $(1+k x)^{n}$ are

$$
1+A x+B x^{2}+B x^{3}+\ldots
$$

where k is a positive constant and A, B and n are positive integers.
(a) By considering the coefficients of x^{2} and x^{3}, show that $3=(n-2) k$.

Given that $A=4$,
(b) find the value of n and the value of k.
\qquad
7. continued
\qquad
\qquad
\qquad
\qquad
\qquad \longrightarrow
\qquad
8. (a) Solve, for $0 \leq x<360^{\circ}$, the equation $\cos \left(x-20^{\circ}\right)=-0.437$, giving your answers to the nearest degree.
(b) Find the exact values of θ in the interval $0 \leq \theta<360^{\circ}$ for which

$$
\begin{equation*}
3 \tan \theta=2 \cos \theta . \tag{6}
\end{equation*}
$$

\qquad
8. continued
\qquad
\qquad
\qquad
\qquad
\qquad (1)
\qquad
\qquad
\qquad
\qquad
\qquad \longrightarrow
\qquad
9. A pencil holder is in the shape of an open circular cylinder of radius $r \mathrm{~cm}$ and height $h \mathrm{~cm}$. The surface area of the cylinder (including the base) is $250 \mathrm{~cm}^{2}$.
(a) Show that the volume, $V \mathrm{~cm}^{3}$, of the cylinder is given by $V=125 r-\frac{\pi r^{3}}{2}$.
(b) Use calculus to find the value of r for which V has a stationary value.
(c) Prove that the value of r you found in part (b) gives a maximum value for V.
(d) Calculate, to the nearest cm^{3}, the maximum volume of the pencil holder.
\qquad
9. continued
\qquad
\qquad
\qquad
\qquad
\qquad \longrightarrow
\qquad
\qquad
\qquad
\qquad
\qquad \longrightarrow
\qquad
10.

Figure 2

Figure 2 shows part of the curve C with equation

$$
y=9-2 x-\frac{2}{\sqrt{x}}, \quad x>0 .
$$

The point $A(1,5)$ lies on C and the curve crosses the x-axis at $B(b, 0)$, where b is a constant and $b>0$.
(a) Verify that $b=4$.

The tangent to C at the point A cuts the x-axis at the point D, as shown in Fig. 2.
(b) Show that an equation of the tangent to C at A is $y+x=6$.
(c) Find the coordinates of the point D.

The shaded region R, shown in Fig. 2, is bounded by C, the line $A D$ and the x-axis.
(d) Use integration to find the area of R.
\qquad
10. continued
10. continued

