GCE Examinations

Advanced Subsidiary

Core Mathematics C1

Sample Paper from Solomon Press
 Time: 1 hour 30 minutes

Instructions and Information

Candidates may NOT use a calculator in this paper.
Full marks may be obtained for answers to ALL questions.
Mathematical formulae and statistical tables are available.
This paper has ten questions.

Advice to Candidates
You must show sufficient working to make your methods clear to an examiner. Answers without working may gain no credit.

Written by Shaun Armstrong
© Solomon Press

1. Find the set of values of x for which

$$
\begin{equation*}
2 x^{2}-11 x+12<0 . \tag{4}
\end{equation*}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad 0
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad \longrightarrow
\qquad 1
\qquad 1
\qquad 1
\qquad
\qquad
\qquad
\qquad
\qquad
2. (a) Express $\left(6 \frac{1}{4}\right)^{-\frac{1}{2}}$ as an exact fraction in its simplest form.
(2)
(b) Find the value of x such that

$$
2^{x+1}=4 \sqrt{2} .
$$

(3)
\qquad
\qquad
\qquad
\qquad
\qquad (0
\qquad
\qquad \longrightarrow
\qquad
\qquad
\qquad
\qquad 1
\qquad 1
\qquad \longrightarrow (
\qquad \longrightarrow (
\qquad
\qquad
\qquad
\qquad
\qquad
3. A sequence is defined by the recurrence relation

$$
u_{n+1}=8+k u_{n}, \quad n \geq 1, \quad u_{1}=3,
$$

where k is a constant.
Given that $u_{3}=11$,
(a) find the two possible values of k.

Given also that $k<0$,
(b) find the value of u_{4}.
\qquad
\qquad \longrightarrow
\qquad \longrightarrow
\qquad 1
\qquad \longrightarrow (
\qquad
\qquad
\qquad
\qquad
\qquad
3. continued
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad (
\qquad位

\qquad (
\qquad
\qquad
\qquad
\qquad
\qquad $\underline{\text { lol }}$
\qquad \longrightarrow
\qquad \longrightarrow
\qquad (
\qquad \longrightarrow
\qquad
\qquad
\qquad
4. (a) Find $\int\left(6 x^{\frac{1}{2}}-x\right) \mathrm{d} x$.

The curve with equation $y=\mathrm{f}(x)$ passes through the point with coordinates $\left(1,6 \frac{1}{2}\right)$ and is such that

$$
\mathrm{f}^{\prime}(x)=6 x^{\frac{1}{2}}-x
$$

(b) Show that the point with coordinates $(4,27)$ lies on the curve $y=\mathrm{f}(x)$.
\qquad \square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad 1
\qquad $\underline{4}$
\qquad \longrightarrow
\qquad \longrightarrow
\qquad \longrightarrow
\qquad
\qquad
\qquad
4. continued
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad \longrightarrow
\qquad \longrightarrow

\qquad (
\qquad
\qquad
\qquad
\qquad
\qquad L
\qquad \longrightarrow
\qquad \longrightarrow
\qquad (
\qquad \longrightarrow
\qquad
\qquad
\qquad
5. Solve the simultaneous equations

$$
\begin{align*}
& 2 x-y+9=0 \\
& x^{2}+2 x y+y^{2}=9 \tag{7}
\end{align*}
$$

\qquad
\qquad \longrightarrow
\qquad \longrightarrow
\qquad \longrightarrow
\qquad \longrightarrow
\qquad
\qquad
\qquad
\qquad
\qquad
5. continued
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad位
\qquad
\qquad \longrightarrow
\qquad \longrightarrow
\qquad (
\qquad \longrightarrow [_ـ_ـ_
\qquad
\qquad
6. A curve has the equation

$$
y=x+\frac{8}{x}+3 .
$$

(a) Find the gradient of the curve at the point $P(2,9)$.

The tangent to the curve at the point Q is parallel to the tangent to the curve at P.
(b) Find the coordinates of Q.
6. continued
\qquad
\qquad \longrightarrow
\qquad \longrightarrow
\qquad (
\qquad \longrightarrow
\qquad
\qquad
\qquad

Leave
7.

Figure 1
Figure 1 shows the curve with equation $y=\mathrm{f}(x)$ which has a turning point at $(1,5)$.
(a) Showing the coordinates of the turning point in each case, sketch on separate diagrams in the spaces provided the curves with equations
(i) $y=\mathrm{f}(x+3)$,
(ii) $y=\mathrm{f}(2 x)$.
(b) Given also that

$$
\mathrm{f}(x)=a x^{2}+b x+3,
$$

find the values of the constants a and b.

Leave
blank
7. continued
8. A sports club has 400 members when it launches a scheme to recruit new members. In a model of the outcome of the scheme, it is assumed that 20 new members join in the first month, 24 in the second month, 28 in the third month and so on, with the number joining the club increasing by 4 in each subsequent month.

Using this model,
(a) find the number of new members who join the club in the eighth month of the scheme,
(b) find the total number of new members who join the club during the first year of the scheme.

The model also assumes that the club will lose 8 members each month.
(c) Find how many months the scheme would have to run for before the total membership of the club is 1000 .
8. continued
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square
\qquad \longrightarrow
\qquad \longrightarrow
\qquad (
\qquad \longrightarrow
\qquad
\qquad
\qquad
9. \quad The straight line l_{1} passes through the points $A(-2,2)$ and $B(1,3)$.
(a) Find an equation for l_{1}, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

The straight line l_{2} is perpendicular to l_{1} and passes through the point $C(9,-1)$.
(b) Find an equation for l_{2}.

Given that l_{1} and l_{2} intersect at the point D,
(c) show that the ratio of the length of $A B$ to the length of $A D$ is $1: 3$
9. continued
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad迤

\qquad (
\qquad
\qquad
\qquad
\qquad
\qquad \longrightarrow
\qquad \longrightarrow
\qquad \longrightarrow
\qquad (
\qquad L
\qquad
\qquad
\qquad
10. The curve C has the equation $y=x^{3}-4 x^{2}+x+6$.
(a) Show that $(x+1)(x-2)(x-3) \equiv x^{3}-4 x^{2}+x+6$.
(b) Sketch the curve C in the space provided, showing the coordinates of any points of intersection with the coordinate axes.

The point P on C has x-coordinate 1 .
(c) Find an equation of the tangent to C at P.
10. continued
\square

END

