mark scheme

Practice Paper A : Further Pure 1

Question Number	General Scheme		Marks
1 (a)	$(3r-1)^2 = 9r^2 - 6r + 1$	B1: correct expansion	B1
	$\sum_{r=1}^{n} (3r-1)^{2} = 9 \sum_{r=1}^{n} r^{2} - 6 \sum_{r=1}^{n} r + \sum_{r=1}^{n} 1$	M1: correct partitioning	M1
	$= \frac{9n}{6}(n+1)(2n+1) - \frac{6n}{2}(n+1) + n$ $= \frac{3n}{2}(n+1)(2n+1) - 3n(n+1) + n$	M1: correct use of standard formula, including the $(+)$ <i>n</i>	M1
	$= \frac{n}{2} \Big[3(n+1)(2n+1) - 6(n+1) + 2 \Big]$ $= \frac{n}{2} \Big[3(2n^2 + 3n + 1) - 6n - 6 + 2 \Big]$	M1: factorising of $\frac{n}{2}$ at any stage	M1
	$=\frac{n}{2}(6n^2+3n-1)$	A1: cao	A1 (6)
(b)	$2^{2} + 5^{2} + 8^{2} + 11^{2} + \dots + 149^{2} = \sum_{r=1}^{50} (3r - 1)^{2}$	B1: correct limits seen or implied through a correct substitution	B1
	$\frac{50}{2} \left[6(50)^2 + 3(50) - 1 \right] = 378725$	A1: cao	A1 (2)
		Total	8

2 (a)	$f(-2) = (-2)^3 - 4(-2) + 2 = 2$	M1: an attempt to evaluate $f(-2)$, f(-2.5) and	M1
	$f(-2) = (-2)^{3} - 4(-2) + 2 = 2$ $f(-2.5) = (-2.5)^{3} - 4(-2.5) + 2 = -3.6(25)$ $f(-2.25) = (-2.25)^{3} - 4(2.25) + 2 = -0.39(0625)$	f(-2.25) and $f(-2.25)$. At least one must be correct for this mark.	
	$f(-2.125) = (-2.125)^3 - 4(-2.125) + 2$ $= 0.90(429)$	dM1: an attempt to evaluate the midpoint of their interval from the first iteration	M1
	Since there is a <u>change of sign</u> across the interval $[-2.25, -2.125]$, α must lie within this interval.	A1: cao, including a justification that mentions the idea of a change of sign. Use of a table with correct working scores	A1
		3/3	(3)
(b)	f(0)=2, f(1)=-1	B1: $f(0)$ and $f(1)$ correctly evaluated	B1
	$\frac{1-\beta}{1} = \frac{\beta-0}{2}$ $2-2\beta = \beta \rightarrow 3\beta = 2$	M1: a correct method using linear interpolation to find β .	M1
	$\beta = \frac{2}{3} = 0.667$	A1: correct value of β to three significant figures	A1 (3)
		Total	6

3	Let $f(x) = 2x^4 - 14x^3 + 51x^2 - 98x + 85$		
(a)	If $2-i$ is a root of $f(x)$, then $2+i$ is also a root	B1: identifies 2+i is also a root at any stage	B1
	$\therefore (x-2)^2 = -1$	M1: correct attempt to work out a factor of	M1
	$\therefore x^2 - 4x + 5$ is a factor of $f(x)$	f(x)	
	$\frac{2x^{2}-6x+17}{x^{2}-4x+5)2x^{4}-14x^{3}+51x^{2}-98x+85}$ $\frac{2x^{4}-8x^{3}+10x^{2}}{-6x^{3}+41x^{2}-98x}$ $\frac{-6x^{3}+24x^{2}-30x}{17x^{2}-68x+85}$ $\frac{17x^{2}-68x+85}{0}$	dM1: use of algebraic division (or any alternate method, i.e. inspection) to find the other factor	M1
	$\therefore f(x) = (x^2 - 4x + 5)(2x^2 - 6x + 17)$		
	Other roots given when, $2x^2 - 6x + 17 = 0$	ddM1: correct method to solve 3TQ	M1
	$x^{2} - 3x + \frac{17}{2} = 0 \rightarrow \left(x - \frac{3}{2}\right)^{2} = \frac{9}{4} - \frac{17}{2}$		
	$\left(\therefore x = \frac{3}{2} \pm \frac{5}{2}i \right)$		
	$\therefore x = \frac{3}{2} \pm \frac{5}{2}i, x = 2 \pm i$	A1: correct roots worked out and stated at any stage of the working	A1 (5)
Note	Do not penalise candidates who do not define $f(x)$) or use a less	
	substantiated method – provided enough is present	for the award of the	
	method marks, full marks should be awarded. Ans	wer only scores 0/0.	
(b)	B3: all roots correctly plotted (deduct one mark for ev	ery incorrect plot)	B3

4 (a)	$\det \mathbf{O} = ad - bc$	M1: correct substitution of elements of O into the	M
	$\therefore \det \mathbf{O} = 3 - 2 = 1$	formula A1: cao	A1
			(2)
(b)	$\mathbf{N} = \mathbf{M}^{-1} \times \det \mathbf{M} \times \det \mathbf{O} \times \mathbf{O}$	M1: correct application of inverse matrices to	Μ
	$\mathbf{N} = \mathbf{M}^{-1} \times \det \mathbf{M} \times \det \mathbf{O} \times \mathbf{O}$	find N	
	1 (3 2)	M1: an attempt to find	Μ
	$\mathbf{M}^{-1} = \frac{1}{15 - 0} \begin{pmatrix} 3 & 2\\ 0 & 5 \end{pmatrix}$	\mathbf{M}^{-1} . See the note about the award of this	
	$\therefore \mathbf{N} = \frac{1}{15} \times \begin{pmatrix} 3 & 2 \\ 0 & 5 \end{pmatrix} \times \det \mathbf{M} \times \det \mathbf{O} \times \mathbf{O}$	mark	
	$\therefore \mathbf{N} = \begin{pmatrix} 3 & 2 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 1 & 0 \end{pmatrix}$		A
	$\therefore \mathbf{N} = \begin{pmatrix} 11 & 6\\ 5 & 0 \end{pmatrix}$	A1: correct matrix for N	
	$\therefore \begin{pmatrix} a+6 & b-a \\ a & b-2a-1 \end{pmatrix} = \begin{pmatrix} 11 & 6 \\ 5 & 0 \end{pmatrix}$	M1: correct comparison of elements and suitable verifications using substitutions	M
	a = 5, b = 11	A1: cao	A
			(5)
Note	Some candidates may realise from an early stage the		
	inverse matrix cancels directly with the det M from	-	
	not penalise if \mathbf{M}^{-1} is not explicitly stated or is state	ed without the $\frac{1}{\det \mathbf{M}}$.	
		Total	7
ALT	An alternative method for (b) would be as follows:		
	$ \begin{pmatrix} 5 & -2 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} a+6 & b-a \\ a & b-2a-1 \end{pmatrix} = (15)(1) \begin{pmatrix} 3 & 2 \\ 1 & 0 \end{pmatrix} \mathbf{M1} $		

$$\begin{pmatrix} 3a+30 & 3b-a+2 \\ 3a & 3b-6a-3 \end{pmatrix} = 15 \begin{pmatrix} 3 & 2 \\ 1 & 0 \end{pmatrix} \mathbf{M1 A1}$$

$$\therefore 3a = 15 \rightarrow a = 5, \ 3b-5+2 = 30 \rightarrow b = 11 \ \mathbf{M1 A1}$$

=			
5 (a)	$x = \frac{-11 \pm \sqrt{11^2 - 4(5)(-17)}}{2(5)}$	M1: correct method to solve 3TQ	M1
	$\alpha = 1.047091, \ \beta = -3.247091$	A1: α and β correctly evaluated to six decimal places	A1 (2)
(b)	f'(x) = 10x + 11	B1: correct differential	B1
	$f(1.25) = 5(1.25)^{2} + 11(1.25) - 17 = 4.5625$	M1: attempts to evaluate $f(1.25)$ and $f'(1.25)$	M1
	f'(1.25) = 23.5	at any stage	
		A1ft : $f(1.25)$ and	A1
		f'(1.25) correct, ft <i>their</i>	
		differential	
	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$	M1: correct use of formula	M1
	$\therefore x_2 = 1.25 - \frac{f(1.25)}{f'(1.25)}$		
	$\therefore x_2 = 1.25 - \frac{4.5625}{23.5} = 1.055851$	A1: cao to six decimal places. No ft	A1
	$\alpha = 1.047091$	B1: cao	(5) B1
(c)	Our estimate states that $\alpha = 1.055851$ The decimal places agree up to 2 decimal places. Hence our approximation is correct to 2 decimal	Answer only (without justification) is enough for B1	(1)
	places		(1)

(d)	$\frac{1.055851 - 1.047091}{1.04701} (\times 100)$	M1: correct method	M1
	1.04791	based on their values.	
		Condone the numerator	
		in the form $\alpha - x_2$ if	
		<i>their</i> $x_2 < \alpha$ A1: 0.84%	
	= 0.84%	A1: 0.84%	A1
			(2)
		Total	10

6	$z_1 = \sqrt{2} + i\sqrt{2}$	B1: z_1 correct	B1
(a)	$z_1 = \sqrt{2} + i\sqrt{2}$ $z_3 = 2\sqrt{2} - i(2\sqrt{2})$	B1: z_3 correct	B1
			(2)
(b)	$\frac{\sqrt{2}+i\sqrt{2}}{2\sqrt{2}-i(2\sqrt{2})} \times \frac{2\sqrt{2}+i(2\sqrt{2})}{2\sqrt{2}+i(2\sqrt{2})}$	M1: correct realisation of the denominator	M1
	$=\frac{8i}{16}=\frac{1}{2}i$	A1: correct manipulation of complex terms arriving at the correct answer	A1 (2)
	$\arg\left(\frac{1}{2}i - \frac{\lambda\sqrt{3}}{2} - \frac{\lambda}{2}i\right) = \pi$	M1: attempts to evaluate and use z_2 A1: correct z_2	M1 A1
	If $\arg\left(\frac{z_1}{z_3} - z_2\right) = \pi$, then $\operatorname{Im}\left(\frac{z_1}{z_3} - z_2\right) = 0$ $\therefore \frac{1}{2} - \frac{\lambda}{2} = 0 \implies \lambda = 1$	M1: sets imaginary components equal to 0 A1: cao	M1 A1
			(3)
		Total	8

7	$\frac{dy}{dx} = \frac{2a}{y}$ $\therefore m_{T_m} = \frac{2a}{2am} = \frac{1}{m} \qquad \therefore m_{T_n} = \frac{2a}{2an^2} = \frac{1}{n^2}$ $y - 2am = \frac{1}{m}(x - am^2) \qquad y - 2an^2 = \frac{1}{n^2}(x - an^4)$ $my - x = am^2 \qquad n^2y - x = an^4$ $my - n^2y = am^2 - an^4$ $y(m - n^2) = a(m^2 - n^4)$ $y = \frac{a(m - n^2)(m + n^2)}{(m - n^2)} = a(m + n^2)$	M1: attempts to find $\frac{dy}{dx}$. This can be doneby numerous methods (itis done here implicitly)A1: correct gradient oftangent at M or NM1: correct method tofind equation of tangentat M or NA1: both equations fortangents correctM1: correct attempt atsimultaneous equations	M1 A1 A1 A1 M1 A1
	$\therefore am(m+n^{2})-x = am^{2}$ $\therefore x = amn^{2}$ $\therefore 3a = amn^{2} \rightarrow 3 = m^{2}n$ $\therefore m = \sqrt{\frac{3}{n}}$	A1: correct x M1: sets x coordinate = 3a A1: cao oe Total	A1 M1 A1 8
		ı otal	ð

8	Let $f(n) = 4^{n+1} + 5^{2n-1}$		
	When $n = 1$:	B1: candidate shows that the result is true for	B1
	$f(1) = 4^2 + 5 = 21$	n = 1	
	\therefore The result is true for $n = 1$		
	Assume that when $n = k$, $f(k)$ divides 21 /	M1: assumption made	M1
	f(k) 21		
	When $n = k + 1$:		
	$f(k+1) = 4^{k+2} + 5^{2k+1}$		
	$f(k+1) = 4(4^{k+1}) + 25(5^{2k-1})$	M1: correct method to use the assumption in	M1
	$f(k+1) = 4(4^{k+1}) + (21+4)(5^{2k-1})$	the inductive stage	
	$f(k+1) = 4(4^{k+1}) + 4(5^{2k-1}) + 21(5^{2k-1})$		
	$f(k+1) = 4 \left[4^{k+1} + 5^{2k-1} \right] + 21 \left(5^{2k-1} \right)$		
	$f(k+1) = 4f(k) + 21(5^{2k-1})$	A1: reduces $f(k+1)$ to a multiple of 21	A1
	If the result is true for $n = k$, then it has been shown to	be true for $n = k + 1$. As	A1
	<u>it was shown to be true</u> for $n = 1$, <u>it is thus true for all</u>	$n(\in\mathbb{Z}^+).$	
	A1: a conclusive statement that conveys the consensure elements	s of all the underlined	
		Total	5
ALT	There are many alternatives methods to prove this result evaluate $f(k+1) - f(k)$ and try to show $f(k+1)$ is a This method is shown below, but in whatever method is scheme from above should be employed.	a multiple of 21 from that.	
	$f(k+1) - f(k) = 4^{k+2} + 5^{2k+1} - 4^{k+1}$	-5^{2k-1}	
	$f(k+1) - f(k) = (4^{k+2} - 4^{k+1}) + (5^{2k})$	$(1-5^{2k-1})$	
	$f(k+1) - f(k) = (4^{k+2} - 4^{k+1}) + (5^{2})$	$^{k+1}-5^{2k-1})$	
	$f(\kappa+1) - f(\kappa) = (4^{-\kappa} - 4^{-\kappa}) + (5^{-\kappa})$	-5)	

$$f(k+1) - f(k) = 4^{k+1}(4-1) + 5^{2k-1}(5^{2}-1)$$

$$f(k+1) - f(k) = 3(4^{k+1}) + 5^{2k-1}(21+3)$$

$$f(k+1) - f(k) = 3(4^{k+1}) + 21(5^{2k-1}) + 3(5^{2k-1})$$

$$f(k+1) - f(k) = 3(4^{k+1} + 5^{2k-1}) + 21(5^{2k-1})$$

$$f(k+1) - f(k) = 3f(k) + 21(5^{2k-1})$$

$$f(k+1) = 4f(k) + 21(5^{2k-1})$$
This should then be followed by the required conclusion.

9 (a)	$\frac{dy}{dx} = -\frac{y}{x} \text{ or } -\frac{c^2}{x^2}$	B1: correct $\frac{dy}{dx}$	B1
	$\left. \frac{dy}{dx} \right _{x=ct, y=\frac{c}{t}} = -\frac{1}{t^2}$	B1ft : $\frac{dy}{dx}$ correctly evaluated at <i>P</i>	B1
	$y - \frac{c}{t} = -\frac{1}{t^2}(x - ct)$	M1: correct method to find equation of tangent	M1
	$t^{2}y - ct = -x + ct$ $t^{2}y + x = 2ct$	A1: cso	A1 (4)
(b)	$y - \frac{c}{t} = t^2 \left(x - ct \right)$	B1ft: correct gradient of normal M1: use of $y - y_1 = m(x - x_1)$ or	B1 M1
		y = mx + c A1: cao oe	A1 (3)
(c)	$A(2ct,0)$ $B\left(0, \frac{c-ct^4}{t}\right)$	B1: correct coordinates of <i>A</i>	B1
		B1: correct coordinates of <i>B</i>	B1
	Area of triangle = $\frac{2ct \times \left(\frac{c - ct^4}{t}\right)}{2}$	M1: correct method to work out the area of the triangle	M1
	$=c^2\left(1-t^4\right)$	A1: correct expression oe	A1 (4)
		Total	11

LHS: $\sum_{n=1}^{1} 1 \cdot 1! = 1$ RHS: $2! - 1 = 1$ \therefore The statement is true for $i = 1$.B1: candidate shows that the result is true for $i = 1$ B1Assume that when $i = k$, $\sum_{n=1}^{k} n \cdot n! = (k+1)! - 1$ M1: assumption madeM1When $i = k + 1$: $\sum_{n=1}^{k+1} n \cdot n! = \sum_{n=1}^{k} n \cdot n! + (k+1) \cdot (k+1)!$ $= (k+1)! - 1 + (k+1) \cdot (k+1)!$ M1: correct method to use the assumption in the inductive stageM1 $k+1$: $= (k+1)! [1+k+1] - 1$ $= (k+2)! - 1$ M1: convincingly shows that $\sum_{m=1}^{k+1} n \cdot n! = (k+2)! - 1$ $\sum_{m=1}^{k+1} n \cdot n! = (k+2)! - 1$	9	When $i = 1$,		
RHS: $2!-1=1$ \therefore The statement is true for $i=1$.M1: assumption madeM1Assume that when $i = k$, $\sum_{n=1}^{k} n \cdot n! = (k+1)!-1$ When $i = k+1$:M1: assumption madeM1 $\sum_{n=1}^{k+1} n \cdot n! = \sum_{n=1}^{k} n \cdot n! + (k+1) \cdot (k+1)!$ $= (k+1)! - 1 + (k+1) \cdot (k+1)!$ $= (k+1)![1+k+1]-1$ $= (k+1)![1+k+1]-1$ $= (k+2)! - 1$ M1: convincingly shows that $\sum_{n=1}^{k+1} n \cdot n! = (k+2)! - 1$ \cos M1If the result is true for $i = k$, then it has been shown to be true for $i = k+1$. As it was shown to be true for $i = 1$, it is thus true for all $i \in \mathbb{Z}^+$).A1A1: a conclusive statement that conveys the consensus of all the underlined elementsA1		LHS: $\sum_{n=1}^{1} 1 \cdot 1! = 1$	that the result is true for	B1
Assume that when $i = k$, $\sum_{n=1}^{k} n \cdot n! = (k+1)! - 1$ M1: assumption madeM1When $i = k + 1$:M1: correct method to use the assumption in the inductive stageM1 $\sum_{n=1}^{k+1} n \cdot n! = \sum_{n=1}^{k} n \cdot n! + (k+1) \cdot (k+1)!$ M1: correct method to use the assumption in the inductive stageM1 $= (k+1)! - 1 + (k+1) \cdot (k+1)!$ M1: correct method to use the assumption in the inductive stageM1 $= (k+1)! [1+k+1] - 1$ A1: convincingly shows that $\sum_{n=1}^{k+1} n \cdot n! = (k+2)! - 1$ A1 $= (k+2)! - 1$ $\sum_{n=1}^{k+1} n \cdot n! = (k+2)! - 1$ csoA1If the result is true for $i = k$, then it has been shown to be true for $i = k+1$. As it was shown to be true for $i = 1$, it is thus true for all $i (\in \mathbb{Z}^+)$.A1A1: a conclusive statement that conveys the consensus of all the underlined elementsA1		RHS: $2!-1=1$	<i>i</i> – 1	
Assume that when $i = k$, $\sum_{n=1}^{n} n \cdot n! = (k+1)! - 1$ When $i = k+1$: $\sum_{n=1}^{k+1} n \cdot n! = \sum_{n=1}^{k} n \cdot n! + (k+1) \cdot (k+1)!$ $= (k+1)! - 1 + (k+1) \cdot (k+1)!$ $= (k+1)! [1+k+1] - 1$ $= (k+1)! [k+2] - 1$ $= (k+2)! - 1$ If the result is true for $i = k$, then it has been shown to be true for $i = k+1$. As it was shown to be true for $i = 1$, it is thus true for all $i (\in \mathbb{Z}^+)$. A1: a conclusive statement that conveys the consensus of all the underlined elements		\therefore The statement is true for $i = 1$.		
$\begin{bmatrix} \sum_{n=1}^{k+1} n \cdot n! = \sum_{n=1}^{k} n \cdot n! + (k+1) \cdot (k+1)! \\ = (k+1)! - 1 + (k+1) \cdot (k+1)! \\ = (k+1)![1+k+1] - 1 \\ = (k+1)![k+2] - 1 \\ = (k+2)! - 1 \end{bmatrix}$ $\begin{bmatrix} \mathbf{A1: convincingly shows that} \\ \sum_{n=1}^{k+1} n \cdot n! = (k+2)! - 1 \\ cso \end{bmatrix}$ If the result is true for $i = k$, then it has been shown to be true for $i = k+1$. As it was shown to be true for $i = 1$, it is thus true for all $i \in \mathbb{Z}^+$. $\mathbf{A1: conversion of all the underlined elements}$		Assume that when $i = k$, $\sum_{n=1}^{k} n \cdot n! = (k+1)! - 1$	M1: assumption made	M1
$= (k+1)! -1 + (k+1) \cdot (k+1)!$ $= (k+1)![1+k+1] - 1$ $= (k+1)![k+2] - 1$ $= (k+2)! - 1$ If the result is true for $i = k$, then it has been shown to be true for $i = k+1$. As it cso If the result is true for $i = 1$, it is thus true for all $i (\in \mathbb{Z}^+)$. A1: a conclusive statement that conveys the consensus of all the underlined elements $= (k+1)![k+2] - 1$ $= (k+2)! - 1$ A1: be inductive statement that converse the consensus of all the underlined elements $= (k+1)![k+2] - 1$ $= (k+2)! - 1$ $=$		When $i = k + 1$:		
$= (k+1)! -1 + (k+1) \cdot (k+1)!$ $= (k+1)![1+k+1] - 1$ $= (k+1)![k+2] - 1$ $= (k+2)! - 1$ If the result is true for $i = k$, then it has been shown to be true for $i = k+1$. As it converses that $\sum_{n=1}^{k+1} n \cdot n! = (k+2)! - 1$ $= (k+2)! - 1$ A1		$\sum_{n=1}^{k+1} n \cdot n! = \sum_{n=1}^{k} n \cdot n! + (k+1) \cdot (k+1)!$	use the assumption in	
$= (k+1)![k+2]-1$ $= (k+2)! -1$ A1: convincingly shows that $\sum_{n=1}^{k+1} n \cdot n! = (k+2)!-1$ CSO A1 If the result is true for $i = k$, then it has been shown to be true for $i = k+1$. As it was shown to be true for $i = 1$, it is thus true for all $i (\in \mathbb{Z}^+)$. A1: a conclusive statement that conveys the consensus of all the underlined elements $= (k+2)! - 1$		$= (k+1)! -1 + (k+1) \cdot (k+1)!$	the inductive stage	MI
$= (k+2)! - 1$ that $\sum_{n=1}^{k+1} n \cdot n! = (k+2)! - 1$ cso If the result is true for $i = k$, then it has been shown to be true for $i = k+1$. As it was shown to be true for $i = 1$, it is thus true for all $i (\in \mathbb{Z}^+)$. A1: a conclusive statement that conveys the consensus of all the underlined elements $A1$		=(k+1)![1+k+1]-1		
$=(k+2)! -1$ $\sum_{n=1}^{k+1} n \cdot n! = (k+2)! - 1$ cso If the result is true for $i = k$, then it has been shown to be true for $i = k+1$. As it was shown to be true for $i = 1$, it is thus true for all $i (\in \mathbb{Z}^+)$. A1 A1		=(k+1)![k+2]-1	•••	
If the result is true for $i = k$, then it has been shown to be true for $i = k + 1$. As itA1was shown to be true for $i = 1$, it is thus true for all $i (\in \mathbb{Z}^+)$.A1A1: a conclusive statement that conveys the consensus of all the underlined elements		=(k+2)! -1	$\sum_{n=1}^{k+1} n \cdot n! = (k+2)! - 1$	A1
was shown to be true for $i = 1$, it is thus true for all $i \in \mathbb{Z}^+$. A1: a conclusive statement that conveys the consensus of all the underlined elements		If the result is true for $i = k$, then it has been shown to		A1
elements				
Total 6		5	s of all the underlined	
			Total	6