mark

 schemePractice Paper A : Further Pure 1

Question Number	General Sch		Marks
(a)	$(3 r-1)^{2}=9 r^{2}-6 r+1$	B1: correct expansion	B1
	$\sum_{r=1}^{n}(3 r-1)^{2}=9 \sum_{r=1}^{n} r^{2}-6 \sum_{r=1}^{n} r+\sum_{r=1}^{n} 1$	M1: correct partitioning	M1
	$\begin{aligned} & =\frac{9 n}{6}(n+1)(2 n+1)-\frac{6 n}{2}(n+1)+n \\ & =\frac{3 n}{2}(n+1)(2 n+1)-3 n(n+1)+n \end{aligned}$	M1: correct use of standard formula, including the $(+) n$	M1
	$\begin{aligned} & =\frac{n}{2}[3(n+1)(2 n+1)-6(n+1)+2] \\ & =\frac{n}{2}\left[3\left(2 n^{2}+3 n+1\right)-6 n-6+2\right] \end{aligned}$	M1: factorising of $\frac{n}{2}$ at any stage	M1
	$=\frac{n}{2}\left(6 n^{2}+3 n-1\right)$	A1: cao	A1 (6)
(b)	$2^{2}+5^{2}+8^{2}+11^{2}+\ldots+149^{2}=\sum_{r=1}^{50}(3 r-1)^{2}$	B1: correct limits seen or implied through a correct substitution	B1
	$\frac{50}{2}\left[6(50)^{2}+3(50)-1\right]=378725$	A1: cao	A1 (2)
		Total	8

2	$\begin{aligned} & f(-2)=(-2)^{3}-4(-2)+2=2 \\ & f(-2.5)=(-2.5)^{3}-4(-2.5)+2=-3.6(25) \\ & f(-2.25)=(-2.25)^{3}-4(2.25)+2=-0.39(0625) \end{aligned}$	M1: an attempt to evaluate $f(-2)$, $f(-2.5)$ and $f(-2.25)$. At least one must be correct for this mark.	M1
	$\begin{aligned} & f(-2.125)=(-2.125)^{3}-4(-2.125)+2 \\ & =0.90(429 \ldots) \end{aligned}$	dM1: an attempt to evaluate the midpoint of their interval from the first iteration	M1
	Since there is a change of sign across the interval $[-2.25,-2.125], \alpha$ must lie within this interval.	A1: cao, including a justification that mentions the idea of a change of sign. Use of a table with correct working scores 3/3	A1 (3)
(b)	$f(0)=2, f(1)=-1$	B1: $f(0)$ and $f(1)$ correctly evaluated	B1
	$\begin{aligned} & \frac{1-\beta}{1}=\frac{\beta-0}{2} \\ & 2-2 \beta=\beta \rightarrow 3 \beta=2 \end{aligned}$	M1: a correct method using linear interpolation to find β.	M1
	$\beta=\frac{2}{3}=0.667$	A1: correct value of β to three significant figures	A1 (3)
		Total	6

(a)	Let $f(x)=2 x^{4}-14 x^{3}+51 x^{2}-98 x+85$ If $2-\mathrm{i}$ is a root of $f(x)$, then $2+\mathrm{i}$ is also a root $\therefore(x-2)^{2}=-1$ $\therefore x^{2}-4 x+5$ is a factor of $f(x)$ $\begin{array}{r} 2 x^{2}-6 x+17 \\ \frac{2 x^{4}-8 x^{3}+10 x^{2}}{-6 x^{3}+41 x^{2}-98 x} \\ \frac{-6 x^{3}+24 x^{2}-30 x}{2 x^{4}-14 x^{3}+51 x^{2}-98 x+85} \\ \frac{17 x^{2}-68 x+85}{2}-68 x+85 \\ 0 \end{array}$	B1: identifies $2+\mathrm{i}$ is also a root at any stage M1: correct attempt to work out a factor of $f(x)$ dM1: use of algebraic division (or any alternate method, i.e. inspection) to find the other factor	B1 M1 M1
	$\therefore f(x)=\left(x^{2}-4 x+5\right)\left(2 x^{2}-6 x+17\right)$ Other roots given when, $2 x^{2}-6 x+17=0$ $\begin{aligned} & x^{2}-3 x+\frac{17}{2}=0 \rightarrow\left(x-\frac{3}{2}\right)^{2}=\frac{9}{4}-\frac{17}{2} \\ & \left(\therefore x=\frac{3}{2} \pm \frac{5}{2} \mathrm{i}\right) \end{aligned}$	ddM1: correct method to solve 3TQ	M1
	$\therefore x=\frac{3}{2} \pm \frac{5}{2} \mathrm{i}, x=2 \pm \mathrm{i}$	A1: correct roots worked out and stated at any stage of the working	A1 (5)
Note	Do not penalise candidates who do not define $f(x)$ or use a less substantiated method - provided enough is present for the award of the method marks, full marks should be awarded. Answer only scores $\mathbf{0 / 0}$.		
(b)	B3: all roots correctly plotted (deduct one mark for every incorrect plot)		B3

	$\operatorname{det} \mathbf{O}=a d-b c$ $\therefore \operatorname{det} \mathbf{O}=3-2=1$	M1: correct substitution of elements of \mathbf{O} into the formula A1: cao	M1 A1 (2)
(b)	$\begin{aligned} & \mathbf{N}=\mathbf{M}^{-1} \times \operatorname{det} \mathbf{M} \times \operatorname{det} \mathbf{O} \times \mathbf{O} \\ & \mathbf{N}=\mathbf{M}^{-1} \times \operatorname{det} \mathbf{M} \times \operatorname{det} \mathbf{O} \times \mathbf{O} \end{aligned}$	M1: correct application of inverse matrices to find \mathbf{N}	M1
	$\begin{aligned} & \mathbf{M}^{-1}=\frac{1}{15-0}\left(\begin{array}{ll} 3 & 2 \\ 0 & 5 \end{array}\right) \\ & \therefore \mathbf{N}=\frac{1}{15} \times\left(\begin{array}{ll} 3 & 2 \\ 0 & 5 \end{array}\right) \times \operatorname{det} \mathbf{M} \times \operatorname{det} \mathbf{O} \times \mathbf{O} \\ & \therefore \mathbf{N}=\left(\begin{array}{ll} 3 & 2 \\ 0 & 5 \end{array}\right)\left(\begin{array}{ll} 3 & 2 \\ 1 & 0 \end{array}\right) \\ & \therefore \mathbf{N}=\left(\begin{array}{ll} 11 & 6 \\ 5 & 0 \end{array}\right) \end{aligned}$	M1: an attempt to find \mathbf{M}^{-1}. See the note about the award of this mark A1: correct matrix for \mathbf{N}	M1
	$\therefore\left(\begin{array}{cc} a+6 & b-a \\ a & b-2 a-1 \end{array}\right)=\left(\begin{array}{cc} 11 & 6 \\ 5 & 0 \end{array}\right)$ $a=5, b=11$	M1: correct comparison of elements and suitable verifications using substitutions A1: cao	M1 A1 (5)
Note	Some candidates may realise from an early stage that the $\operatorname{det} \mathbf{M}$ from the inverse matrix cancels directly with the $\operatorname{det} \mathbf{M}$ from the question. Hence do not penalise if \mathbf{M}^{-1} is not explicitly stated or is stated without the $\frac{1}{\operatorname{det} \mathbf{M}}$.		
		Total	7
ALT	An alternative method for (b) would be as follows:$\left(\begin{array}{cc} 5 & -2 \\ 0 & 3 \end{array}\right)\left(\begin{array}{cc} a+6 & b-a \\ a & b-2 a-1 \end{array}\right)=(15)(1)\left(\begin{array}{ll} 3 & 2 \\ 1 & 0 \end{array}\right) \mathbf{M 1}$		

| $\left(\begin{array}{cc}3 a+30 & 3 b-a+2 \\ 3 a & 3 b-6 a-3\end{array}\right)=15\left(\begin{array}{ll}3 & 2 \\ 1 & 0\end{array}\right)$ M1 A1 | |
| :--- | :--- | :--- |
| $\therefore 3 a=15 \rightarrow a=5,3 b-5+2=30 \rightarrow b=11$ M1 A1 | |

5 (a)	$\begin{aligned} & x=\frac{-11 \pm \sqrt{11^{2}-4(5)(-17)}}{2(5)} \\ & \alpha=1.047091, \beta=-3.247091 \end{aligned}$	M1: correct method to solve 3TQ A1: α and β correctly evaluated to six decimal places	M1 A1 (2)
(b)	$\begin{aligned} & f^{\prime}(x)=10 x+11 \\ & f(1.25)=5(1.25)^{2}+11(1.25)-17=4.5625 \\ & f^{\prime}(1.25)=23.5 \end{aligned}$	B1: correct differential M1: attempts to evaluate $f(1.25)$ and $f^{\prime}(1.25)$ at any stage A1ft: $f(1.25)$ and $f^{\prime}(1.25)$ correct, ft their differential	B1 M1 A1
	$\begin{aligned} & x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \\ & \therefore x_{2}=1.25-\frac{f(1.25)}{f^{\prime}(1.25)} \\ & \therefore x_{2}=1.25-\frac{4.5625}{23.5}=1.055851 \end{aligned}$	M1: correct use of formula A1: cao to six decimal places. No ft	M1 A1 (5)
(c)	$\alpha=1.047091$ Our estimate states that $\alpha=1.055851$ The decimal places agree up to 2 decimal places. Hence our approximation is correct to 2 decimal places	B1: cao Answer only (without justification) is enough for B1	B1 (1)

(d)	$\frac{1.055851-1.047091}{1.04791}(\times 100)$	M1: correct method based on their values. Condone the numerator in the form $\alpha-x_{2}$ if their $x_{2}<\alpha$ A1: 0.84%	M1
$=0.84 \%$	Total	$\mathbf{1 0}$	

\begin{tabular}{|c|c|c|c|}
\hline 6
(a) \& \[
\begin{aligned}
\& z_{1}=\sqrt{2}+\mathrm{i} \sqrt{2} \\
\& z_{3}=2 \sqrt{2}-\mathrm{i}(2 \sqrt{2})
\end{aligned}
\] \& \begin{tabular}{l}
B1: \(z_{1}\) correct \\
B1: \(z_{3}\) correct
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1 \\
(2)
\end{tabular} \\
\hline \multirow{3}{*}{(c)} \& \[
\begin{aligned}
\& \frac{\sqrt{2}+\mathrm{i} \sqrt{2}}{2 \sqrt{2}-\mathrm{i}(2 \sqrt{2})} \times \frac{2 \sqrt{2}+\mathrm{i}(2 \sqrt{2})}{2 \sqrt{2}+\mathrm{i}(2 \sqrt{2})} \\
\& =\frac{8 \mathrm{i}}{16}=\frac{1}{2} \mathrm{i}
\end{aligned}
\] \& \begin{tabular}{l}
M1: correct realisation of the denominator \\
A1: correct manipulation of complex terms arriving at the correct answer
\end{tabular} \& M1

A1
(2)

\hline \& \[
$$
\begin{aligned}
& \arg \left(\frac{1}{2} \mathrm{i}-\frac{\lambda \sqrt{3}}{2}-\frac{\lambda}{2} \mathrm{i}\right)=\pi \\
& \text { If } \arg \left(\frac{z_{1}}{z_{3}}-z_{2}\right)=\pi, \text { then } \operatorname{Im}\left(\frac{z_{1}}{z_{3}}-z_{2}\right)=0 \\
& \therefore \frac{1}{2}-\frac{\lambda}{2}=0 \rightarrow \lambda=1
\end{aligned}
$$

\] \& | M1: attempts to evaluate and use z_{2} |
| :--- |
| A1: correct z_{2} |
| M1: sets imaginary components equal to 0 |
| A1: cao | \& | M1 A1 |
| :--- |
| M1 |
| A1 |
| (3) |

\hline \& \& Total \& 8

\hline
\end{tabular}

7	$\frac{d y}{d x}=\frac{2 a}{y}$		M1: attempts to find $\frac{d y}{d x}$. This can be done by numerous methods (it is done here implicitly)	M1
	$\therefore m_{T_{m}}=\frac{2 a}{2 a m}=\frac{1}{m}$	$\therefore m_{T_{n}}=\frac{2 a}{2 a n^{2}}=\frac{1}{n^{2}}$	A1: correct gradient of tangent at M or N	A1
	$\begin{aligned} & y-2 a m=\frac{1}{m}\left(x-a m^{2}\right) \\ & m y-x=a m^{2} \end{aligned}$	$y-2 a n^{2}=\frac{1}{n^{2}}\left(x-a n^{4}\right)$ $n^{2} y-x=a n^{4}$	M1: correct method to find equation of tangent at M or N A1: both equations for tangents correct	M1
	To find intersections:$m y-n^{2} y=a m^{2}-a n^{4}$$y\left(m-n^{2}\right)=a\left(m^{2}-n^{4}\right)$$y=\frac{a\left(m-n^{2}\right)\left(m+n^{2}\right)}{\left(m-n^{2}\right)}=a\left(m+n^{2}\right)$$\therefore a m\left(m+n^{2}\right)-x=a m^{2}$$\therefore x=a m n^{2}$		M1: correct attempt at simultaneous equations A1: correct x	M1
	$\begin{aligned} & \therefore 3 a=a m n^{2} \rightarrow 3=m^{2} n \\ & \therefore m=\sqrt{\frac{3}{n}} \end{aligned}$		M1: sets x coordinate $=$ 3a A1: cao oe	M1 A1
			Total	8

\begin{tabular}{|c|c|c|}
\hline \multirow[t]{4}{*}{8} \& \begin{tabular}{l}
Let \(f(n)=4^{n+1}+5^{2 n-1}\) \\
When \(n=1\) : \\
B1: candidate shows that the result is true for
\[
f(1)=4^{2}+5=21
\] \(n=1\) \\
\(\therefore\) The result is true for \(n=1\)
\end{tabular} \& B1 \\
\hline \& \begin{tabular}{l|l}
Assume that when \(n=k, f(k)\) divides \(21 /\) \& M1: assumption made \\
\(f(k) \mid 21\) \& \\
When \(n=k+1:\) \& \begin{tabular}{l}
M1: correct method to \\
use the assumption in \\
the inductive stage
\end{tabular} \\
\(f(k+1)=4^{k+2}+5^{2 k+1}\) \& \\
\(f(k+1)=4\left(4^{k+1}\right)+25\left(5^{2 k-1}\right)\) \& A1: reduces \(f(k+1)\) to \\
\(f(k+1)=4\left(4^{k+1}\right)+(21+4)\left(5^{2 k-1}\right)\) \& a multiple of 21
\end{tabular} \& M1

M1

A1

\hline \& | If the result is true for $n=k$, then it has been shown to be true for $n=k+1$. As it was shown to be true for $n=1$, it is thus true for all $n\left(\in \mathbb{Z}^{+}\right)$. |
| :--- |
| A1: a conclusive statement that conveys the consensus of all the underlined elements | \& A1

\hline \& Total \& 5

\hline ALT \& There are many alternatives methods to prove this result. Many candidates will evaluate $f(k+1)-f(k)$ and try to show $f(k+1)$ is a multiple of 21 from that. This method is shown below, but in whatever method is used, the same mark scheme from above should be employed.

$$
\begin{gathered}
f(k+1)-f(k)=4^{k+2}+5^{2 k+1}-4^{k+1}-5^{2 k-1} \\
f(k+1)-f(k)=\left(4^{k+2}-4^{k+1}\right)+\left(5^{2 k+1}-5^{2 k-1}\right) \\
f(k+1)-f(k)=\left(4^{k+2}-4^{k+1}\right)+\left(5^{2 k+1}-5^{2 k-1}\right)
\end{gathered}
$$ \&

\hline
\end{tabular}

$f(k+1)-f(k)=4^{k+1}(4-1)+5^{2 k-1}\left(5^{2}-1\right)$	
$f(k+1)-f(k)=3\left(4^{k+1}\right)+5^{2 k-1}(21+3)$	
$f(k+1)-f(k)=3\left(4^{k+1}\right)+21\left(5^{2 k-1}\right)+3\left(5^{2 k-1}\right)$	
$f(k+1)-f(k)=3\left(4^{k+1}+5^{2 k-1}\right)+21\left(5^{2 k-1}\right)$	
$f(k+1)-f(k)=3 f(k)+21\left(5^{2 k-1}\right)$	
$f(k+1)=4 f(k)+21\left(5^{2 k-1}\right)$	
This should then be followed by the required conclusion.	

9 (a)	$\begin{aligned} & \frac{d y}{d x}=-\frac{y}{x} \text { or }-\frac{c^{2}}{x^{2}} \\ & \left.\frac{d y}{d x}\right\|_{x=c t, y=\frac{c}{t}}=-\frac{1}{t^{2}} \end{aligned}$	B1: correct $\frac{d y}{d x}$ B1ft: $\frac{d y}{d x}$ correctly evaluated at P	B1 B1
	$\begin{aligned} & y-\frac{c}{t}=-\frac{1}{t^{2}}(x-c t) \\ & t^{2} y-c t=-x+c t \\ & t^{2} y+x=2 c t \end{aligned}$	M1: correct method to find equation of tangent A1: cso	M1 A1 (4)
(c)(c)	$y-\frac{c}{t}=t^{2}(x-c t)$	B1ft: correct gradient of normal M1: use of $y-y_{1}=m\left(x-x_{1}\right)$ or $y=m x+c$ A1: cao oe	B1 M1 A1 (3)
	$\begin{aligned} & A(2 c t, 0) \\ & B\left(0, \frac{c-c t^{4}}{t}\right) \end{aligned}$	B1: correct coordinates of A B1: correct coordinates of B	B1 B1
	Area of triangle $=\frac{2 c t \times\left(\frac{c-c t^{4}}{t}\right)}{2}$ $=c^{2}\left(1-t^{4}\right)$	M1: correct method to work out the area of the triangle A1: correct expression oe	M1 A1 (4)
		Total	11

9	When $i=1$, LHS: $\sum_{n=1}^{1} 1 \cdot 1!=1$ B1: candidate shows that the result is true for $i=1$ RHS: $2!-1=1$ \therefore The statement is true for $i=1$.	B1
	Assume that when $i=k, \sum_{n=1}^{k} n \cdot n!=(k+1)!-1$ M1: assumption made When $i=k+1:$ M1: correct method to use the assumption in the inductive stage $\sum_{n=1}^{k+1} n \cdot n!=\sum_{n=1}^{k} n \cdot n!+(k+1) \cdot(k+1)!$ A1: convincingly shows $=(k+1)!-1+(k+1) \cdot(k+1)!$ $=(k+1)![1+k+1]-1$ $=(k+1)![k+2]-1$ $\sum_{n=1}^{k+1} n \cdot n!=(k+2)!-1$ $=(k+2)!-1$	M1
	If the result is true for $i=k$, then it has been shown to be true for $i=k+1$. As it was shown to be true for $i=1$, it is thus true for all $i\left(\in \mathbb{Z}^{+}\right)$. A1: a conclusive statement that conveys the consensus of all the underlined elements	A1
	Total	6

