mark scheme

Practice Paper C: Core Mathematics 1

Question Number	General Scheme		Marks
1	$\begin{aligned} & (y+1)^{2}+y^{2}=5 \\ & \left(y^{2}+2 y+1=5\right) \\ & 2 y^{2}+2 y-4=0 \end{aligned}$	M1: uses a correct substitution M1: attempts to form a 3TQ A1: correct equation oe	M1 M1 A1
	$\begin{aligned} & (y-1)(y+2)=0 \\ & y=1, y=-2 \end{aligned}$	M1: attempts to solve 3TQ A1: correct values for y	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
	$x=1+1, x=-2+1$ $x=2, x=-1$	M1: uses their values to find x A1: cao	M1
NOTE	Be sure to reward and not discredit candidates who choose to find x first and then y.		
		Total	7

(a)	$\begin{aligned} & 2 x+4 \geq x-6 \\ & x \geq-10 \end{aligned}$	M1: correct method to solve linear inequality A1: cao	M1 A1 (2)
(b)	Critical values: $\begin{aligned} & x^{2}-6 x+8=0 \\ & (x-4)(x-2)=0 \\ & x=4, x=2 \end{aligned}$	M1: attempts to solve 3TQ A1: correct CVs	M1 A1
		M1: graph drawn with 'inside' region chosen. Can be implied by shading	M1
	$2<x<4$	A1: cao	$\begin{array}{\|l} \hline \mathbf{A 1} \\ \mathbf{(4)} \\ \hline \end{array}$
(c)	$2<x<4$	B1ft: chooses the values of x that satisfies their (a) and (b)	B1 (1)
		Total	7

\begin{tabular}{|c|c|c|c|}
\hline 4 (a) \& \& \begin{tabular}{l}
B1: correct shape (must be a positive cubic) \\
B1: \((0,0)\) shown \\
B1: \((-4,0)\) and \((4,0)\) shown
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1 \\
B1 \\
(3)
\end{tabular} \\
\hline (b) \& \& \begin{tabular}{l}
B1: correct shape (must be a positive cubic) \\
B1: \((0,0),(-2,0)\) and \((2,0)\) shown
\end{tabular} \& B1
B1

(2)

\hline (c) \& \& | B1: correct shape (must be a positive cubic) |
| :--- |
| B1: $(1,0),(-3,0)$ and $(-7,0)$ shown |
| M1: attempt to work out y intercept |
| A1: $(0,-21)$. | \& B1

B1

M1

A1
(4)

\hline \& \& Total \& 9

\hline
\end{tabular}

5	$\frac{2}{(1+\sqrt{5})+\sqrt{6}} \times \frac{(1+\sqrt{5})-\sqrt{6}}{(1+\sqrt{5})-\sqrt{6}}$	M1: multiplies top and bottom by $(1+\sqrt{5})-6$	M1
	$=\frac{2(1+\sqrt{5})-2 \sqrt{6}}{(1+\sqrt{5})^{2}-6}$	M1: attempts to combine the fractions	M1
	$=\frac{\ldots}{1+2 \sqrt{5}+5-6}$	M1: attempts to manipulate the denominator A1: correct denominator	M1 A1
	$=\frac{2+2 \sqrt{5}-2 \sqrt{6}}{1+2 \sqrt{5}+5-6}$	A1: correct numerator	A1
	$\begin{aligned} & =\frac{2+2 \sqrt{5}-2 \sqrt{6}}{2 \sqrt{5}} \\ & =\frac{1+\sqrt{5}-\sqrt{6}}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} \end{aligned}$	M1: rationalises the denominator	M1
	$\begin{aligned} & =\frac{\sqrt{5}+5-\sqrt{30}}{5} \\ & =1+\frac{1}{5} \sqrt{5}-\frac{1}{5} \sqrt{30} \end{aligned}$	A1: cao. The answer must be in the required form.	A1
		Total	7
ALT	Candidates may write the given fr $\frac{2}{(1+\sqrt{6})+\sqrt{5}} \text { or } \frac{2}{1+(\sqrt{6}+\sqrt{5})}$ These are also correct. See the end	e for these methods.	

(a)	$\frac{x+x^{\frac{1}{3}}-3}{x^{\frac{1}{3}}}=x^{\frac{2}{3}}+1-3 x^{-\frac{1}{3}}$	M1: attempts to write the given fraction in index form A1: correct expression	M1 A1
(b)	$\begin{aligned} & \int\left(x^{\frac{2}{3}}+1-3 x^{-\frac{1}{3}}\right) d x \\ & \int\left(x^{\frac{2}{3}}+1-3 x^{-\frac{1}{3}}\right) d x=\frac{x^{\frac{5}{3}}}{\frac{5}{3}}+x-\frac{3 x^{\frac{2}{3}}}{\frac{2}{3}}+c \\ & =\frac{3 x^{\frac{5}{3}}}{5}-\frac{9 x^{\frac{2}{3}}}{2}+x+c \end{aligned}$	M1: correct attempt to integrate one term A1: one term integrated correctly (need not be simplified) A1: all terms integrated correctly + constant.	M1 A1 A1 (5)
	$5=\frac{3(8)^{\frac{5}{3}}}{5}-\frac{9(8)^{\frac{2}{3}}}{2}+8+c$	M1: substitutes $(8,5)$ into their y from (a).	M1
	$\begin{aligned} & 5=\frac{96}{2}-18+8+c \\ & c=15-\frac{96}{2}=-33 \end{aligned}$	A1: correct c with no algebraic slips	A1
	$\therefore y=\frac{3 x^{\frac{5}{3}}}{5}-\frac{9 x^{\frac{2}{3}}}{2}+x-33$	A1ft: y in terms of x, ft of their c	A1 (3)
		Total	8

7	$\left(-\frac{3}{2}, \frac{9}{2}\right)$	B1: correct midpoint of AB	B1
	$\begin{aligned} & m_{\mathrm{AB}}=\frac{3-6}{2--5} \text { or } \frac{6-3}{-5-2} \\ & m_{\mathrm{AB}}=-\frac{3}{7} \end{aligned}$	M1: attempts to work out the gradient of AB A1: correct gradient	M1 A1
	$m_{\text {bisector }}=\frac{-1}{m_{\text {AB }}}\left(=\frac{7}{3}\right)$	A1ft: correct gradient for the bisector. Award ft for use an incorrect gradient of AB	A1
	$\begin{aligned} & y-y_{1}=m\left(x-x_{1}\right) \\ & y-\frac{9}{2}=\frac{7}{3}\left(x--\frac{3}{2}\right) \end{aligned}$	M1: attempts to find the equation of the perpendicular bisector	M1
	$3\left(y-\frac{9}{2}\right)=7\left(x+\frac{3}{2}\right)$ or $7 x-3 y+24=0$ or $3 y-7 x-24=0$ or $y=\frac{7}{3} x+8$	A1: correct bisector in any of the forms. No ft	A1
		Total	6

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{5}{*}{8} \& \[
\begin{aligned}
\& y=\frac{x^{2}-12 x+36}{x} \\
\& y=x-12+36 x^{-1}
\end{aligned}
\] \& \begin{tabular}{l}
M1: attempts converts \(y\) into index form \\
A1: correct expression for \(y\). Accept \(\frac{36}{x}\) for \(36 x^{-1}\)
\end{tabular} \& M1
A1 \\
\hline \& \[
\frac{d y}{d x}=1-36 x^{-2}
\]
\[
\frac{d^{2} y}{d x^{2}}=72 x^{-3}
\] \& \begin{tabular}{l}
M1: correct method to differentiate one term A1: correct first derivative \\
A1ft: correct second derivative
\end{tabular} \& M1
A1
A1 \\
\hline \& \(\left(\frac{x^{4}}{2}\right)\left(\frac{72}{x^{3}}\right)+x^{3}\left(1-\frac{36}{x^{2}}\right)+x-12+\frac{36}{x}+f(x)=0\) \& \begin{tabular}{l}
M1: attempts to substitute their derivatives into the given equation (one term correct) \\
A1ft: correct substitution
\end{tabular} \& M1
A1 \\
\hline \& \[
\begin{aligned}
\& 36 x+x^{3}-36 x+x-12+\frac{36}{x}+f(x)=0 \\
\& x^{3}+x-12+\frac{36}{x}+f(x)=0 \\
\& f(x)=12-x^{3}-x-\frac{36}{x}
\end{aligned}
\] \& \begin{tabular}{l}
M1: for a good attempt to manipulate the algebra \\
A1: \(f(x)\) correct cao
\end{tabular} \& M1

A1

\hline \& \& Total \& 9

\hline ALT \& \multicolumn{2}{|l|}{| Some candidates may use the quotient rule to differentiate y. In such cases, the following scheme applies: $\begin{aligned} & \frac{d y}{d x}=\frac{v u^{\prime}-u v^{\prime}}{v^{2}}=\frac{x(2)(x-6)-(x-6)^{2}(1)}{x^{2}} \text { M1 A1 M1 } \\ & \frac{d y}{d x}=\frac{(x-6)(2 x-x+6)}{x^{2}}=1-36 x^{-2} \text { A1 } \end{aligned}$ |
| :--- |
| The rest is as shown in the standard scheme. If the quotient rule is used again for the second derivative, do not award any extra marks - the only mark is for a correct second derivative (ft of their first derivative). |} \&

\hline
\end{tabular}

9	$\begin{aligned} & u_{n}=a+(n-1) d \\ & 45=a+(2-1) d \\ & 45=a+d \end{aligned}$	$\begin{aligned} & S_{n}=\frac{n}{2}[2 a+(n-1) d] \\ & 1750=10[2 a+(20-1) d] \\ & 175=2 a+19 d \end{aligned}$	M1: an attempt to form an equation using one standard formula A1: one correct expression	M1 A1
	$\begin{aligned} & d=45-a \\ & 175=2 a+19(45 \\ & 175=-17 a+855 \\ & 17 a=680 \rightarrow a= \end{aligned}$		dM1: use of simultaneous equations to find a or d A1: a or d correct	M1 A1
	$d=45-(40)$ $d=5$		ddM1: correct method to find second variable A1ft: correct value for second variable	M1 A1
			Total	6
NOTE	This scheme does not show when d is found first, which should also be credited.			

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
10 \\
(a)
\end{tabular} \& \[
\begin{aligned}
\& b^{2}-4 a c=(3-7 k)^{2}-4\left(2 k-k^{2}\right)\left(6 k^{4}\right) \\
\& =9-42 k+49 k^{2}-48 k^{5}+24 k^{6}
\end{aligned}
\] \& M1: use of the discriminant A1: correct expression A1: correct manipulation \& M1
A1
A1 \\
\hline \multirow{3}{*}{(b)} \& \(24 k^{6}+49 k^{2}+9\) is positive and since \(k\) is negative \(-42 k-48 k^{5}\) is also positive. Hence \(b^{2}-4 a c>0\) and the curve has two intersections with the \(x\) axis. \& \begin{tabular}{l}
A2: cso with a thorough explanation containing the underlined elements Award A1 for a correct answer with a partial explanation. \\
No attempt at an explanation loses both accuracy marks
\end{tabular} \& A2

(5)

\hline \& $$
x=\frac{-(3-7 k) \pm \sqrt{(3-7 k)^{2}-4\left(2 k-k^{2}\right)\left(6 k^{4}\right)}}{2\left(2 k-k^{2}\right)}
$$

\[
\therefore x=\frac{7 k-3 \pm \sqrt{24 k^{6}-48 k^{5}+49 k^{2}-42 k+9}}{4 k-2 k^{2}}

\] \& | M1: use of the quadratic formula |
| :--- |
| A1: correct values except $b^{2}-4 a c$, which (if wrong) should ft their working in (a) |
| A1: cao. Accept equivalent forms, i.e. factorised terms etc | \& M1

A1

A1
(3)

\hline \& $$
f(k)=7 k-3
$$

$$
\begin{aligned}
& g(k)=24 k^{6}-48 k^{5}+49 k^{2}-42 k+9 \\
& h(k)=4 k-2 k^{2}
\end{aligned}
$$ \& These are for reference only. Candidates need not state these \&

\hline (c) \& $$
\begin{aligned}
& x=\frac{7(-1)-3 \pm \sqrt{24+48+49+42+9}}{-6} \\
& x=\frac{5 \pm \sqrt{43}}{3}
\end{aligned}
$$ \& M1: substitutes values into their (b) to find out where the curve crosses the x axis \& M1

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
 \\
B1: correct \(y\) intersection labelled \\
B1: correct shape \\
\(x\) coordinates must be correct and shown on the sketch for full marks.
\end{tabular} \& B1

B1

(3)

\hline \& Total \& 11

\hline ALT \& | A tricky alternative method would be the use of completing the square for part (a): $\begin{aligned} & y=\left(2 k-k^{2}\right)\left(x^{2}+\left(\frac{3-7 k}{2 k-k^{2}}\right) x+\frac{6 k^{4}}{2 k-k^{2}}\right) \mathbf{M 1} \mathbf{A 1} \\ & y=\left(2 k-k^{2}\right)\left[\left(x+\frac{3-7 k}{4 k-2 k^{2}}\right)^{2}-\left(\frac{3-7 k}{4 k-2 k^{2}}\right)^{2}+\frac{6 k^{4}}{2 k-k^{2}}\right] \\ & \left(x+\frac{3-7 k}{4 k-2 k^{2}}\right)^{2}-\left(\frac{3-7 k}{4 k-2 k^{2}}\right)^{2}+\frac{6 k^{4}}{2 k-k^{2}}=0 \\ & \left(x+\frac{3-7 k}{2 k-k^{2}}\right)^{2}=\left(\frac{3-7 k}{4 k-2 k^{2}}\right)^{2}-\frac{6 k^{4}}{2 k-k^{2}} \\ & \left(x+\frac{3-7 k}{2 k-k^{2}}\right)^{2}=\left(\frac{3-7 k}{4 k-2 k^{2}}\right)^{2}-\frac{6 k^{4}}{1-(k-1)^{2}} \end{aligned}$ |
| :--- |
| $\underline{\left(\frac{3-7 k}{4 k-2 k^{2}}\right)^{2}}$ is always positive. Idea that $\frac{6 k^{4}}{1-(k-1)^{2}}$ will always be negative for $k>0$, but $-\frac{6 k^{4}}{1-(k-1)^{2}}$ is hence always positive. Hence, since the RHS is always positive, the equation has two solutions and the curve has two intersections with the x axis. A2 for an explanation that fully conveys the consensus of the above (A1 for a partial explanation with the correct answer). Answer + no explanation loses both | \&

\hline
\end{tabular}

	accuracy marks. NOTE: candidates must show that $2 k-k^{2}$ is negative for all negative k by completing the square, or otherwise. Renounce the final to accuracy marks for candidates who simply state that it is negative.	

$\begin{gathered} 5 \\ \text { ALT } 1 \end{gathered}$	$\frac{2}{(1+\sqrt{6})+\sqrt{5}} \times \frac{(1+\sqrt{6})-\sqrt{5}}{(1+\sqrt{6})-\sqrt{5}}$	M1: multiplies top and bottom by $(1+\sqrt{6})-5$	M1
	$=\frac{2(1+\sqrt{6})-2 \sqrt{5}}{(1+\sqrt{6})^{2}-5}$	M1: attempts to combine the fractions	M1
	$=\frac{\ldots}{2+2 \sqrt{6}}$	M1: attempts to manipulate the denominator A1: correct denominator	M1 A1
	$=\frac{2+2 \sqrt{6}-2 \sqrt{5}}{2+2 \sqrt{6}}$	A1: correct numerator	A1
	$\begin{aligned} & =\frac{1+\sqrt{6}-\sqrt{5}}{1+\sqrt{6}} \\ & =\frac{1+\sqrt{6}-\sqrt{5}}{1+\sqrt{6}} \times \frac{1-\sqrt{6}}{1-\sqrt{6}} \end{aligned}$	M1: rationalises the denominator	M1
	$\begin{aligned} & =\frac{1-\sqrt{6}+\sqrt{6}-6-\sqrt{5}+\sqrt{30}}{-5} \\ & =\frac{-5-\sqrt{5}+\sqrt{30}}{-5} \\ & =1+\frac{1}{5} \sqrt{5}-\frac{1}{5} \sqrt{30} \end{aligned}$	A1: cao. The answer must be in the required form.	A1
		Total	7

| 5 | ALT 2 | $\frac{2}{1+(\sqrt{5}+\sqrt{6})} \times \frac{1-(\sqrt{5}+\sqrt{6})}{1-(\sqrt{5}+\sqrt{6})}$ | M1: multiplies top and
 bottom by $(1+\sqrt{6})-5$ |
| :---: | :--- | :--- | :--- | M1

	$=\frac{2(1+\sqrt{6})-2 \sqrt{5}}{(1+\sqrt{6})^{2}-5}$	M1: attempts to combine the fractions	M1
	$=\frac{\ldots}{2+2 \sqrt{6}}$	M1: attempts to manipulate the denominator A1: correct denominator	M1
			A1
	$=\frac{2+2 \sqrt{6}-2 \sqrt{5}}{2+2 \sqrt{6}}$	A1: correct numerator	A1
	$\begin{aligned} & =\frac{1+\sqrt{6}-\sqrt{5}}{1+\sqrt{6}} \\ & =\frac{1+\sqrt{6}-\sqrt{5}}{1+\sqrt{6}} \times \frac{1-\sqrt{6}}{1-\sqrt{6}} \end{aligned}$	M1: rationalises the denominator	M1
	$\begin{aligned} & =\frac{1-\sqrt{6}+\sqrt{6}-6-\sqrt{5}+\sqrt{30}}{-5} \\ & =\frac{-5-\sqrt{5}+\sqrt{30}}{-5} \\ & =1+\frac{1}{5} \sqrt{5}-\frac{1}{5} \sqrt{30} \end{aligned}$	A1: cao. The answer must be in the required form.	A1
		Total	7

