mark scheme

Practice Paper C : Core Mathematics 1

Question Number	General Scheme	Marks
1	$(y+1)^{2} + y^{2} = 5$ $(y^{2}+2y+1=5)$ M1: uses a correct substitution M1: attempts to for 3TQ	M1 m a M1
	$2y^2 + 2y - 4 = 0$ A1: correct equation	n oe A1
	(y-1)(y+2) = 0 $y = 1, y = -2$ M1: attempts to sol 3TQ A1: correct values f	ve M1 for y A1
	x = 1+1, x = -2+1 M1: uses <i>their</i> valu find x	es to M1
	x = 2, $x = -1$ A1: cao	A1
NOTE	Be sure to reward and not discredit candidates who choose to find x find	irst and then y.
		Total 7

2 (a)	$\frac{1}{25^{\frac{3}{2}}} = \frac{1}{125}$	M1: uses the negative power rule at any stage A1: cao	M1
			A1
(b)	3		(2)
	$= \left(\frac{4}{25x^{2}(1-x)^{2}}\right)^{\frac{3}{2}}$	M1: uses the negative power rule at any stage	M1
	$=\left(\frac{2}{5x(1-x)}\right)^3$	M1: attempts to square root the fraction (two terms correct)	M1
	$=\frac{8}{125x^3(1-x)^3}$	A1: cao isw	A1
			(4)
		Total	6

3 (a)	$2x + 4 \ge x - 6$ $x \ge -10$	M1: correct method to solve linear inequality A1: cao	M1 A1 (2)
(b)	Critical values:		
	$x^{2}-6x+8=0$ (x-4)(x-2)=0	M1: attempts to solve 3TQ	M1
	x = 4, x = 2	A1: correct CVs	A1
	× ×	M1: graph drawn with 'inside' region chosen. Can be implied by shading	M1
	2 < x < 4	A1: cao	A1 (4)
(c)	2 < x < 4	B1ft: chooses the values of <i>x</i> that satisfies <i>their</i> (a) and (b) Total	B1 (1) 7

5	$\frac{2}{(1+\sqrt{5})+\sqrt{6}} \times \frac{(1+\sqrt{5})-\sqrt{6}}{(1+\sqrt{5})-\sqrt{6}}$	M1: multiplies top and bottom by $(1+\sqrt{5})-6$	M1
	$=\frac{2(1+\sqrt{5})-2\sqrt{6}}{(1+\sqrt{5})^2-6}$	M1: attempts to combine the fractions	M1
	$={1+2\sqrt{5}+5-6}$	M1: attempts to manipulate the denominator	M1
		A1: correct denominator	A1
	$=\frac{2+2\sqrt{5}-2\sqrt{6}}{1+2\sqrt{5}+5-6}$	A1: correct numerator	A1
	$=\frac{2+2\sqrt{5}-2\sqrt{6}}{2\sqrt{5}}$		
	$=\frac{1+\sqrt{5}-\sqrt{6}}{\sqrt{5}}\times\frac{\sqrt{5}}{\sqrt{5}}$	M1: rationalises the denominator	M1
	$=\frac{\sqrt{5}+5-\sqrt{30}}{5}$ $=1+\frac{1}{5}\sqrt{5}-\frac{1}{5}\sqrt{30}$	A1: cao. The answer <u>must</u> be in the required form.	A1
		Total	7
ALT	Candidates may write the given fraction as $\frac{2}{(1+\sqrt{6})+\sqrt{5}} \text{ or } \frac{2}{1+(\sqrt{6}+\sqrt{5})}$		
	These are also correct. See the end of this mark scheme for these methods.		

6 (a)	$\frac{x+x^{\frac{1}{3}}-3}{x^{\frac{1}{3}}} = x^{\frac{2}{3}}+1-3x^{-\frac{1}{3}}$	M1: attempts to write the given fraction in index form A1: correct expression	M1 A1
	$\int \left(x^{\frac{2}{3}} + 1 - 3x^{-\frac{1}{3}} \right) dx$		
	$\int \left(x^{\frac{2}{3}} + 1 - 3x^{-\frac{1}{3}}\right) dx = \frac{x^{\frac{5}{3}}}{\frac{5}{3}} + x - \frac{3x^{\frac{2}{3}}}{\frac{2}{3}} + c$	M1: correct attempt to integrate one term A1: one term integrated correctly (need not be simplified)	M1 A1
	$= \frac{3x^3}{5} - \frac{9x^3}{2} + x + c$	A1: all terms integrated correctly + constant.	A1 (5)
(b)	$5 = \frac{3(8)^{\frac{5}{3}}}{5} - \frac{9(8)^{\frac{2}{3}}}{2} + 8 + c$	M1: substitutes $(8,5)$ into <i>their</i> y from (a).	M1
	$5 = \frac{96}{2} - 18 + 8 + c$		
	$c = 15 - \frac{96}{2} = -33$	A1: correct <i>c</i> with no algebraic slips	A1
	$\therefore y = \frac{3x^{\frac{5}{3}}}{5} - \frac{9x^{\frac{2}{3}}}{2} + x - 33$	A1ft: y in terms of x , ft of <i>their</i> c	A1 (3)
		Total	8

7	$\left(-\frac{3}{2},\frac{9}{2}\right)$	B1: correct midpoint of AB	B1
	$m_{\rm AB} = \frac{3-6}{2-5}$ or $\frac{6-3}{-5-2}$	M1: attempts to work out the gradient of AB	M1
	$m_{\rm AB} = -\frac{3}{7}$	A1: correct gradient	A1
	$m_{\text{bisector}} = \frac{-1}{m_{\text{AB}}} \left(=\frac{7}{3}\right)$	A1ft: correct gradient for the bisector. Award ft for use an incorrect gradient of AB	A1
	$y - y_1 = m(x - x_1)$		
	$y - \frac{9}{2} = \frac{7}{3} \left(x - \frac{3}{2} \right)$	M1: attempts to find the equation of the perpendicular bisector	M1
	$3\left(y-\frac{9}{2}\right) = 7\left(x+\frac{3}{2}\right)$	A1: correct bisector in any of the forms. No ft	A1
	or		
	7x - 3y + 24 = 0		
	or		
	3y - 7x - 24 = 0		
	or		
	$y = \frac{7}{3}x + 8$		
		Total	6

8	$x^2 - 12x + 36$	M1: attempts converts y	M1
	$y = \frac{x}{x}$	into index form	
	$y = x - 12 + 36x^{-1}$	A1: correct expression for	A1
		36	
		y. Accept — for $36x^{-1}$	
	$\frac{dy}{dt} = 1 - 36x^{-2}$	M1: correct method to	M1
	$\frac{dx}{dx}$	differentiate one term	A 1
		derivative	
	d^2		
	$\frac{dy}{dx^2} = 72x^{-3}$	A1ft: correct second	A1
	dx	M1. attempts to substitute	M1
	(-, 4)(72) (2() 2(<i>their</i> derivatives into the	IVII
	$\left \frac{x}{2}\right \left \frac{72}{3}\right + x^{3}\left(1 - \frac{36}{2}\right) + x - 12 + \frac{36}{2} + f(x) = 0$	given equation (one term	
	$\begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} x^2 \end{pmatrix} \begin{pmatrix} x^2 \end{pmatrix} \begin{pmatrix} x^2 \end{pmatrix}$	correct)	
		AIII: correct substitution	AI
	$36x + x^3 - 36x + x - 12 + \frac{36}{36} + f(x) = 0$	M1: for a good attempt to	M1
	x	mampulate the algebra	
	36		
	$x^{3} + x - 12 + \frac{30}{x} + f(x) = 0$		
	λ		
	$f(x) = 12 x^3 x^{-36}$	A1: $f(x)$ correct cao	A1
	$\int (x) - 12 - x - x - \frac{1}{x}$		
		Total	9
ALT	Some candidates may use the quotient rule to different	tiate v. In such cases, the	-
	following scheme applies:		
	$\frac{dy}{dt} = \frac{vu' - uv'}{uv'} = \frac{x(2)(x-6) - (x-6)^2(1)}{10}$ M1 A1 M	1	
	$dx v^2 x^2$		
	dy (x, b)(2x, x+b)		
	$\frac{dy}{dt} = \frac{(x-6)(2x-x+6)}{2} = 1-36x^{-2}$ A1		
	ax x		
	The rest is as shown in the standard scheme. If the que	otient rule is used again for	
	the second derivative, do not award any extra marks –	the only mark is for a	
	correct second derivative (tt of their first derivative).		

9	$u_n = a + (n-1)d$ $45 = a + (2-1)d$ $45 = a + d$	$S_{n} = \frac{n}{2} [2a + (n-1)d]$ 1750 = 10 [2a + (20 - 1)d] 175 = 2a + 19d	M1: an attempt to form an equation using one standard formulaA1: one correct expression	M1 A1
	d = 45 - a 175 = 2a + 19(45 - a) 175 = -17a + 855 175 = -17a + 855)	dM1: use of simultaneous equations to find a or d	M1
	$\frac{17a = 680 \rightarrow a = 40}{d = 45 - (40)}$ $d = 5$)	ddM1: correct method to find second variable A1ft: correct value for second variable	M1 A1
			Total	6
NOTE	This scheme does not s	show when d is found first, which	ich should also be credited.	

10			
(a)	$b^{2} - 4ac = (3 - 7k)^{2} - 4(2k - k^{2})(6k^{4})$ = 042k + 40k^{2} - 48k^{5} + 24k^{6}	M1: use of the discriminant A1: correct expression	M1 A1
	$= 9 - 42k + 49k^{2} - 48k^{3} + 24k^{3}$ $\frac{24k^{6} + 49k^{2} + 9}{16} \text{ is positive and since } k \text{ is }$ $\text{negative } -42k - 48k^{5} \text{ is also positive. Hence}$ $\frac{b^{2} - 4ac > 0}{and \text{ the curve has two intersections}}$ with the x axis.	A1: correct manipulation A2: cso with a thorough explanation containing the underlined elements Award A1 for a correct answer with a partial explanation. No attempt at an	A1 A2
		explanation loses <u>both</u> accuracy marks	(5)
(b)	$x = \frac{-(3-7k)\pm\sqrt{(3-7k)^2 - 4(2k-k^2)(6k^4)}}{2(2k-k^2)}$	M1: use of the quadratic formula A1: correct values <u>except</u> $b^2 - 4ac$, which (if wrong) should ft their working in (a)	M1 A1
	$\therefore x = \frac{7k - 3 \pm \sqrt{24k^6 - 48k^5 + 49k^2 - 42k + 9}}{4k - 2k^2}$	A1: cao. Accept equivalent forms, i.e. factorised terms etc	A1 (3)
	$f(k) = 7k - 3$ $g(k) = 24k^{6} - 48k^{5} + 49k^{2} - 42k + 9$	These are for reference only. Candidates need not state these	
	$h(k) = 4k - 2k^2$		
(c)	$x = \frac{7(-1) - 3 \pm \sqrt{24 + 48 + 49 + 42 + 9}}{-6}$	M1: substitutes values into <i>their</i> (b) to find out where the curve crosses the x axis	M1
	$x = \frac{5 \pm \sqrt{43}}{3}$		

		B1: correct <i>y</i> intersection labelled	B1
	$\frac{6}{5-\sqrt{43}}$	B1: correct shape	B1
	$\overline{3}$	<i>x</i> coordinates must be correct and shown on the sketch for full marks.	(3)
		Total	11
ALT	A tricky alternative method would be the use of compl (a):	leting the square for part	
	$y = (2k - k^2) \left(x^2 + \left(\frac{3 - 7k}{2k - k^2} \right) x + \frac{6k^4}{2k - k^2} \right) $ M1 A1		
	$y = \left(2k - k^2\right) \left[\left(x + \frac{3 - 7k}{4k - 2k^2}\right)^2 - \left(\frac{3 - 7k}{4k - 2k^2}\right)^2 + \frac{3}{2k}\right]$	$\left[\frac{6k^4}{x-k^2}\right]$ M1	
	$\left(x + \frac{3 - 7k}{4k - 2k^2}\right)^2 - \left(\frac{3 - 7k}{4k - 2k^2}\right)^2 + \frac{6k^4}{2k - k^2} = 0$		
	$\left(x + \frac{3 - 7k}{2k - k^2}\right)^2 = \left(\frac{3 - 7k}{4k - 2k^2}\right)^2 - \frac{6k^4}{2k - k^2}$		
	$\left(x + \frac{3 - 7k}{2k - k^2}\right)^2 = \left(\frac{3 - 7k}{4k - 2k^2}\right)^2 - \frac{6k^4}{1 - (k - 1)^2}$		
	$\frac{\left(\frac{3-7k}{4k-2k^2}\right)^2}{1-(k-k)^2}$ is always positive. Idea that $\frac{6k^2}{1-(k-k)^2}$	$\left(\frac{1}{1}\right)^2$ will always be	
	negative for $k > 0$, but $-\frac{6k^4}{1-(k-1)^2}$ is hence alw	ays positive. Hence,	
	since the RHS is always positive, the equation has	s two solutions and the	
	curve has two intersections with the x axis. A2 for	or an explanation that	
	fully conveys the consensus of the above (A1 fo	r a partial explanation	
	with the correct answer). Answer + no explana	tion loses <u>both</u>	

accuracy marks.
NOTE: candidates must show that $2k - k^2$ is negative for all negative k
by completing the square, or otherwise. Renounce the final to accuracy
marks for candidates who simply state that it is negative.

5 ALT 1	$\frac{2}{(1+\sqrt{6})+\sqrt{5}} \times \frac{(1+\sqrt{6})-\sqrt{5}}{(1+\sqrt{6})-\sqrt{5}}$	M1: multiplies top and bottom by $(1 + \sqrt{6}) - 5$	M1
	$=\frac{2(1+\sqrt{6})-2\sqrt{5}}{(1+\sqrt{6})^2-5}$	M1: attempts to combine the fractions	M1
	$=\frac{\dots}{2+2\sqrt{6}}$	M1: attempts to manipulate the denominator A1: correct denominator	M1 A1
	$= \frac{2 + 2\sqrt{6} - 2\sqrt{5}}{2 + 2\sqrt{6}}$	A1: correct numerator	A1
	$= \frac{1+\sqrt{6}-\sqrt{5}}{1+\sqrt{6}}$ $= \frac{1+\sqrt{6}-\sqrt{5}}{1+\sqrt{6}} \times \frac{1-\sqrt{6}}{1-\sqrt{6}}$	M1: rationalises the denominator	M1
	$=\frac{1-\sqrt{6}+\sqrt{6}-6-\sqrt{5}+\sqrt{30}}{-5}$ $=\frac{-5-\sqrt{5}+\sqrt{30}}{-5}$	A1: cao. The answer <u>must</u> be in the required form.	A1
	$=1 + \frac{1}{5}\sqrt{5} - \frac{1}{5}\sqrt{30}$		
		Total	7

5 ALT 2	$\frac{2}{1+(\sqrt{5}+\sqrt{6})} \times \frac{1-(\sqrt{5}+\sqrt{6})}{1-(\sqrt{5}+\sqrt{6})}$	M1: multiplies top and bottom by $(1+\sqrt{6})-5$	M1
	$1 + (\sqrt{3} + \sqrt{6}) - 1 - (\sqrt{3} + \sqrt{6})$		

$=\frac{2(1+\sqrt{6})-2\sqrt{5}}{(1+\sqrt{6})^2-5}$	M1: attempts to combine the fractions	M1
$=\frac{\dots}{2+2\sqrt{6}}$	M1: attempts to manipulate the denominator A1: correct denominator	M1 A1
$=\frac{2+2\sqrt{6}-2\sqrt{5}}{2+2\sqrt{6}}$	A1: correct numerator	A1
$= \frac{1+\sqrt{6}-\sqrt{5}}{1+\sqrt{6}}$ $= \frac{1+\sqrt{6}-\sqrt{5}}{1+\sqrt{6}} \times \frac{1-\sqrt{6}}{1-\sqrt{6}}$	M1: rationalises the denominator	M1
$=\frac{1-\sqrt{6}+\sqrt{6}-6-\sqrt{5}+\sqrt{30}}{-5}$ $=\frac{-5-\sqrt{5}+\sqrt{30}}{-5}$ $=1+\frac{1}{5}\sqrt{5}-\frac{1}{5}\sqrt{30}$	A1: cao. The answer <u>must</u> be in the required form.	A1
<u> </u>	Total	7