mark

 schemePractice Paper A : Core Mathematics 1

\begin{tabular}{|c|c|c|c|}
\hline Question Number \& General Scheme \& \& Marks \\
\hline \multirow[t]{3}{*}{1} \& \[
\int\left(12 x^{\frac{3}{4}}-6 x+6 x^{-2}-2\right)=\frac{12 x^{\frac{7}{4}}}{\frac{7}{4}}-\frac{6 x^{2}}{2}+\frac{6 x^{-1}}{-1}-2 x,(+c)
\] \& M1: correct attempt to integrate one term A1: one term correctly integrated A1: all terms correctly integrated, \(+c\) not required \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { A1 }
\end{aligned}
\] \\
\hline \& \(\int\left(12 x^{\frac{3}{4}}-6 x+6 x^{-2}-2\right)=\frac{36 x^{\frac{7}{4}}}{7}-3 x^{2}-6 x^{-1}-2 x+c\) \& A1: all terms integrated and simplified including the constant of integration Accept \(\frac{6}{x}\) for \(6 x^{-1}\) \& A1 \\
\hline \& \multicolumn{3}{|c|}{Total 4} \\
\hline \multirow[t]{5}{*}{2} \& \(\frac{4+2 \sqrt{7}}{5-2 \sqrt{7}} \times \frac{5+2 \sqrt{7}}{5+2 \sqrt{7}}\) \& M1: multiplies top and bottom by \(5+2 \sqrt{7}\) \& M1 \\
\hline \& \(\frac{\ldots}{25-4(7)}=\frac{\cdots}{-3}\) \& A1: obtains a denominator of -3 \& A1 \\
\hline \& \(\frac{20+8 \sqrt{7}+10 \sqrt{7}+28}{-3}=\frac{48+18 \sqrt{7}}{-3}\) \& \begin{tabular}{l}
M1: correct expansion of the numerator \\
A1: correct numerator
\end{tabular} \& \[
\begin{aligned}
\& \hline \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \\
\hline \& \(-16-6 \sqrt{7}\) \& A1: cao \& A1 \\
\hline \& \multicolumn{2}{|r|}{Total} \& 5 \\
\hline \multirow[t]{2}{*}{3

(b)} \& \& \begin{tabular}{l}
B1: correct shape (positive cubic showing a repeated root)

B1: $(0,0)$ labelled

B1: $(3,0)$ labelled. Accept 3 if clearly on the x axis

Award B0 B1 B1 for correct cubic with repeated root at $(3,0)$ and not $(0,0)$

 \&

B1

B1

B1

(3)
\end{tabular}

\hline \& \[
$$
\begin{aligned}
& \left(y=x^{3}-3 x^{2}\right) \\
& \frac{d y}{d x}=3 x^{2}-6 x
\end{aligned}
$$

\] \& | M1: correct method used to differentiate |
| :--- |
| A1: correct differential oe | \& | M1 |
| :--- |
| A1 |

\hline
\end{tabular}

(c)	$\begin{aligned} & 3(-1)^{2}-6(-1) \\ & =9 \end{aligned}$	M1: substitutes -1 into their gradient function $\text { A1: } 9 \text { cao }$	M1 A1 (4)
	$\begin{aligned} & {\left[y=(-1)^{2}(-1-3)\right]} \\ & y=-4 \end{aligned}$	B1: $y=-4$	B1
	$y-(-4)=9(x-(-1))$	M1: works out the equation of the tangent using their value for y and part (b)	M1
	$9 x-y+5=0$ or $-9 x+y-5=0$	A1: $a=9, b=-1, c=5$ or $a=-9, b=1, c=-5$	A1 (3)
		Total	10

4	Method 1		
	$\left(3^{x}-81\right)\left(3^{x}-9\right)=0$	M1: factorising in the form $\left(3^{x}-a\right)\left(3^{x}-b\right)(=0)$ A1: correct factorising Note: accept use of completing the square or the quadratic formula	M1 A1
	$3^{x}-81=0$ or $3^{x}-9=0$	M1: sets both of their factors equal to 0	M1
	$x=4$ or $x=2$	$\begin{aligned} & \text { A1: } x=4 \mathbf{c a o} \\ & \text { A1: } x=2 \mathbf{c a o} \end{aligned}$	A1 A1
	Method 2		
	$\begin{aligned} & y=3^{x} \\ & (y-81)(y-9)=0 \end{aligned}$	M1: attempts to use the correct substitution A1: correct factorising Note: accept use of completing the square or the quadratic formula	M1 A1
	Then the rest is as method 1.		
		Total	5

5 (a)	$a_{3}=10 a_{2}-a_{1}+x, a_{4}=10 a_{3}-a_{2}+x$ $a_{3}=58+x, a_{4}=520+11 x$	M1: correct expression to work out a_{3} or a_{4} A1: a_{3} or a_{4} correct	M1 A1
(b)	$\sum_{r=1}^{4} a_{r}=2+6+58+x+520+11 x$	M1: correct expression using their values for a_{3} and a_{4}	M1
	$\sum_{r=1}^{4} a_{r}=586+12 x$	A1: cao	A1 (4)
	$\text { their }(a)=676$ $\begin{aligned} & (586+12 x=676) \\ & (12 x=90) \end{aligned}$	M1: sets their part (a) equal to 676	M1
	$x=\frac{90}{12}$	A1: cao, oe. No ft	$\begin{aligned} & \mathbf{A 1} \\ & (\mathbf{2}) \end{aligned}$
		Total	6

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{\[
6
\]} \& \[
-\frac{2}{3} x^{2}+2 x
\] \& B1: correct expression \& B1 \\
\hline \& \begin{tabular}{l|l}
\(\frac{d}{d x}\left(-\frac{2}{3} x^{2}+2 x\right)=-\frac{2}{3}(2) x+2\) \& \(\begin{array}{l}\text { M } \\
\text { to } \\
\\
\\
\\
\text { A } \\
\text { d } \\
\text { e }\end{array}\) \\
\hline
\end{tabular} \& \begin{tabular}{l}
M1: correct method used to differentiate \\
A1ft: correct differentiation using their expression
\end{tabular} \& \[
\begin{array}{|l}
\hline \text { M1 } \\
\text { A1 }
\end{array}
\] \\
\hline \& \(-\frac{4}{3} x+2\) \& A1: cao \& \begin{tabular}{|l}
A1 \\
(4)
\end{tabular} \\
\hline \multirow[t]{3}{*}{(ii)} \& \[
\frac{x(x-10)(x+10)}{x^{2}(x-10)}
\]
\[
x^{-1}(x+10)
\] \& \begin{tabular}{l}
M1: attempts to factorise the numerator including an attempt to use the difference of two squares A1: correctly factorised expression \\
A1: correct simplification
\end{tabular} \& \begin{tabular}{|c}
M1 \\
\\
A1 \\
\\
A1
\end{tabular} \\
\hline \& \[
\begin{aligned}
\& \frac{d}{d x}\left(1+10 x^{-1}\right)=10(-1) x^{-2} \\
\& =-\frac{10}{x^{2}}
\end{aligned}
\] \& \begin{tabular}{l}
M1: correct method used to differentiate \\
A1: correct differentiation oe
\end{tabular} \& M1

A1
(5)

\hline \& \& Total \& 10

\hline ALT \& | (i) Use of the product rule: $\begin{aligned} & \frac{2}{3} \times \frac{d}{d x}[(-x)(x-3)]=\frac{2}{3}[(-1)(x-3)+(-x)(1)] \mathbf{M 1} \mathbf{M} \\ & =\frac{2}{3}(-x+3-x) \\ & =-\frac{4}{3} x+2 \mathbf{A 1} \end{aligned}$ |
| :--- |
| B1 becomes M1 |
| No ft on $1^{\text {st }}$ A1 |
| M1 - states or implies use of $v u^{\prime}+u v^{\prime}$ |
| M1 - one term correctly differentiated |
| A1 - correct expression |
| A1 - correct answer cao oe |
| (ii) Use of the quotient rule: |
| First three marks as in original scheme, then $\frac{d}{d x}\left(\frac{x+10}{x}\right)=\frac{x(1)-(x+10)(1)}{x^{2}} \mathbf{M 1}-\text { use of } \frac{v u^{\prime}-u v^{\prime}}{v^{2}}$ |
| A1 - answer as in original scheme, cao | \& M1 A1 \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{5}{*}{7} \& \begin{tabular}{l}
\[
(d-50)(d-150)(<0)
\] \\
Critical values: \(d=50, d=150\)
\end{tabular} \& \begin{tabular}{l}
M1: Attempts to solve 3TQ \\
A1: correct CVs
\end{tabular} \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \\
\hline \& \begin{tabular}{l}
 \\
Choosing 'inside' region
\[
50<d<150
\]
\end{tabular} \& \begin{tabular}{l}
M1: graph drawn with 'inside' region chosen. Can be implied by shading \\
A1: cao
\end{tabular} \& M1

A1

\hline \& \[
$$
\begin{aligned}
& 2 d-400>d-325 \\
& d>75
\end{aligned}
$$

\] \& | M1: attempts to solve linear equation by making d the subject |
| :--- |
| A1: cao | \& | M1 |
| :--- |
| A1 |

\hline \& $$
\begin{aligned}
& 75<d<150 \\
& d_{1}=75, d_{2}=150
\end{aligned}
$$ \& A1 ft: correct region chosen using their values for d \& A1

\hline \& \& Total \& 7

\hline
\end{tabular}

8	$A(8,0), B(0,-16)$ Midpoint (4,-8)	B1: both coordinates correct A1ft: correct midpoint using their A and B	B1 A1
	$m_{l_{2}}=-\frac{1}{2}$	B1: correct gradient oe	B1
	$\begin{aligned} & y-(-8)=-\frac{1}{2}(x-4) \\ & (2 y+16=-x+4) \\ & C(-12,0) \end{aligned}$	M1: use of $y-y_{1}=m\left(x-x_{1}\right)$ A1: correct coordinate for C	M1 A1
	$\begin{aligned} & B C=\sqrt{12^{2}+16^{2}} \\ & B C=20 \text { (sq. units) } \end{aligned}$	M1: correct method to work out distance between two points. A1ft: correct value of BC.	M1 A1
		Total	8

9	$\begin{aligned} & 3(x+2 y-4)=5 x(2 x+5) \\ & 3 x+6 y-12=10 x^{2}+25 x \\ & y=\frac{10 x^{2}+22 x+12}{6}=\frac{5}{3} x^{2}+\frac{11}{3} x+2 \end{aligned}$	M1: attempts to make y the subject A2: correct rearranging (Note: A1 for one mistake in rearranging, A0 for more than one)	M1 $\mathbf{A 2}$
	$\begin{aligned} & b^{2}-4 a c=\left(\frac{11}{3}\right)^{2}-4\left(\frac{5}{3}\right)(2) \\ & =\frac{121}{9}-\frac{40}{3}=\frac{1}{9} \end{aligned}$	M1: use of the discriminant. A1: $\frac{1}{9}$ cao	M1 A1
	Since $b^{2}-4 a c>0$, the curve has two real solutions.	A1: statement seen, including underlined section	A1
		Total	6
ALT	Candidates may use completing the square (or try to find the roots) instead of using the discriminant. In this case, award M1 for completing the square (or for the use of another correct method), $\mathbf{A 1}$ for correct expression, $\mathbf{A 1}$ for the roots worked out or an explanation.		

10	$\begin{aligned} & y=\int\left(3 x^{2}+10 x-5\right) d x \\ & y=\frac{3 x^{3}}{3}+\frac{10 x^{2}}{2}-5 x+b \end{aligned}$	M1: correct method to integrate A1: correct integration. Terms need not be simplified B1: constant. Accept any letter	M1 A1 B1
	$y=x^{3}+5 x^{2}-5 x+b$ $a=5$	A1ft: $a=$ the coefficient of their x^{2} term	A1
	$-2=5^{3}+5(5)^{2}-5(5)+b$	M1: substitutes coordinates into their y	M1
	$-2=125+125-25+b$	M1: attempts to solve for their ' b '	M1
	$b=-227$	A1: cao	A1

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{4}{*}{11} \& In the \(n^{\text {th }}\) week, Alice saves \(£ 3.75\) \& \begin{tabular}{l}
M1: correct method to work out \(2.5 \%\) \\
A1: \(£ 3.75\)
\end{tabular} \& \[
\begin{array}{|l|}
\hline \text { M1 } \\
\text { A1 }
\end{array}
\] \\
\hline \& \[
3.75=1.05+(n-1)(0.1)
\]
\[
\begin{aligned}
\& 27=n-1 \\
\& n=28
\end{aligned}
\] \& \begin{tabular}{l}
M1: use of \(a+(n-1) d\) to work out \(n\) \\
A1: \(n^{\text {th }}\) term \(=28\)
\end{tabular} \& M1
A1 \\
\hline \& \[
S_{28}=\frac{28}{2}[2(1.05)+(28-1)(0.1)]
\]
\[
\begin{aligned}
\& =\frac{28}{2}(2.10+2.70) \\
\& =\frac{28}{2}(4.80) \\
\& =£ 67.20
\end{aligned}
\] \& \begin{tabular}{l}
M1: use of
\[
S_{n}=\frac{n}{2}[2 a+(n-1) d]
\] \\
A1ft: correct values substituted \\
M1: correct rearranging \\
A1: cao
\end{tabular} \& M1
A1

M1
A1

\hline \& \& Total \& 8

\hline
\end{tabular}

