## mark scheme

Practice Paper A : Core Mathematics 1



| Question<br>Number | General Scheme                                                                                                                         |                                                                                            | Marks |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------|
| 1                  | $12x^{\frac{3}{4}} - 6x^2 - 6x^{-1}$                                                                                                   | M1: correct attempt to                                                                     | M1    |
|                    | $\int (12x^{\frac{3}{4}} - 6x + 6x^{-2} - 2) = \frac{12x^{\frac{1}{4}}}{\frac{7}{2}} - \frac{6x^2}{2} + \frac{6x^{-1}}{-1} - 2x, (+c)$ | integrate one term<br>A1: one term correctly                                               | A1    |
|                    | 4                                                                                                                                      | integrated                                                                                 | A1    |
| 1                  |                                                                                                                                        | A1: all terms correctly                                                                    |       |
|                    |                                                                                                                                        | integrated, + c <b>not</b><br>required                                                     |       |
|                    | $\int (12x^{\frac{3}{4}} - 6x + 6x^{-2} - 2) = \frac{36x^{\frac{7}{4}}}{7} - 3x^2 - 6x^{-1} - 2x + c$                                  | <b>A1:</b> all terms integrated<br>and simplified including<br>the constant of integration | A1    |
|                    |                                                                                                                                        | Accept $\frac{6}{x}$ for $6x^{-1}$                                                         |       |
|                    |                                                                                                                                        | Total                                                                                      | 4     |

| 2 | $\frac{4 + 2\sqrt{7}}{5 - 2\sqrt{7}} \times \frac{5 + 2\sqrt{7}}{5 + 2\sqrt{7}}$ | <b>M1:</b> multiplies top and bottom by $5 + 2\sqrt{7}$            | M1       |
|---|----------------------------------------------------------------------------------|--------------------------------------------------------------------|----------|
|   | ${25 - 4(7)} = {-3}$                                                             | A1: obtains a denominator of -3                                    | A1       |
|   | $\frac{20+8\sqrt{7}+10\sqrt{7}+28}{-3} = \frac{48+18\sqrt{7}}{-3}$               | M1: correct expansion of<br>the numerator<br>A1: correct numerator | M1<br>A1 |
|   | $-16 - 6\sqrt{7}$                                                                | <b>A1:</b> cao                                                     | A1       |
|   |                                                                                  | Total                                                              | 5        |



|     | $3(-1)^2 - 6(-1)$                | <b>M1:</b> substitutes -1 into <i>their</i> gradient function                           | M1        |
|-----|----------------------------------|-----------------------------------------------------------------------------------------|-----------|
|     | = 9                              | A1: 9 cao                                                                               | A1<br>(4) |
| (c) | $[y = (-1)^{2}(-1-3)]$<br>y = -4 |                                                                                         |           |
|     | y = -4                           | <b>B1:</b> $y = -4$                                                                     | B1        |
|     | y - (-4) = 9(x - (-1))           | M1: works out the equation of the tangent using <i>their</i> value for $y$ and part (b) | M1        |
|     | 9x - y + 5 = 0                   | <b>A1:</b> $a = 9, b = -1, c = 5$                                                       | A1        |
|     | or                               | or $a = -9, b = 1, c = -5$                                                              |           |
|     | -9x + y - 5 = 0                  |                                                                                         | (3)       |
|     |                                  | Total                                                                                   | 10        |

| Method 1                        |                               |       |
|---------------------------------|-------------------------------|-------|
| $(3^x - 81)(3^x - 9) = 0$       | M1: factorising in the        | M1 A1 |
|                                 | form                          |       |
|                                 | $(3^x - a)(3^x - b)(=0)$      |       |
|                                 | A1: correct factorising       |       |
|                                 | Note: accept use of           |       |
|                                 | completing the square or      |       |
|                                 | the quadratic formula         |       |
| $3^x - 81 = 0$ or $3^x - 9 = 0$ | M1: sets both of <i>their</i> | M1    |
|                                 | factors equal to 0            |       |
| x = 4 or $x = 2$                | A1: $x = 4$ cao               | A1 A1 |
|                                 | <b>A1:</b> $x = 2$ cao        |       |
| Method 2                        |                               |       |
| $y = 3^x$                       | M1: attempts to use the       | M1 A1 |
|                                 | correct substitution          |       |
| (y-81)(y-9) = 0                 | A1: correct factorising       |       |
|                                 | Note: accept use of           |       |
|                                 | completing the square or      |       |
|                                 | the quadratic formula         |       |
| Then the rest is as method 1.   |                               |       |
|                                 | Total                         | 5     |

| 5<br>(a) | $a_3 = 10a_2 - a_1 + x$ , $a_4 = 10a_3 - a_2 + x$ | <b>M1:</b> correct expression to work out $a_3$ or $a_4$                          | M1        |
|----------|---------------------------------------------------|-----------------------------------------------------------------------------------|-----------|
|          | $a_3 = 58 + x, \ a_4 = 520 + 11x$                 | <b>A1:</b> $a_3$ or $a_4$ correct                                                 | A1        |
|          | $\sum_{r=1}^{4} a_r = 2 + 6 + 58 + x + 520 + 11x$ | <b>M1:</b> correct expression<br>using <i>their</i> values for $a_3$<br>and $a_4$ | M1        |
|          | $\sum_{r=1}^{4} a_r = 586 + 12x$                  | A1: cao                                                                           | A1<br>(4) |
| (b)      | their(a) = 676<br>(586+12x = 676)                 | M1: sets <i>their</i> part (a) equal to 676                                       | M1        |
|          | (12x = 90)                                        |                                                                                   |           |
|          | $x = \frac{90}{12}$                               | A1: cao, oe. No ft                                                                | A1<br>(2) |
|          |                                                   | Total                                                                             | 6         |

| <b>6</b> (i) | $-\frac{2}{3}x^2+2x$                                                                                                                                                                       | <b>B1:</b> correct expression                                                        | B1        |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------|
|              | $\frac{d}{dx}(-\frac{2}{3}x^2+2x) = -\frac{2}{3}(2)x+2$                                                                                                                                    | M1: correct method used to differentiate                                             | M1        |
|              | <i>dx</i> 5 5                                                                                                                                                                              | A1ft: correct<br>differentiation using <i>their</i><br>expression                    | A1        |
|              | $-\frac{4}{3}x+2$                                                                                                                                                                          | A1: cao                                                                              | A1<br>(4) |
| (ii)         | $\frac{x(x-10)(x+10)}{x^2(x-10)}$                                                                                                                                                          | M1: attempts to factorise<br>the numerator <b>including</b><br>an attempt to use the | M1        |
|              |                                                                                                                                                                                            | difference of two squares<br>A1: correctly factorised                                | A1        |
|              | $x^{-1}(x+10)$                                                                                                                                                                             | expression<br>A1: correct simplification                                             | A1        |
|              | $\frac{d}{dx}(1+10x^{-1}) = 10(-1)x^{-2}$                                                                                                                                                  | M1: correct method used to differentiate                                             | M1        |
|              | $=-\frac{10}{x^2}$                                                                                                                                                                         | A1: correct differentiation oe                                                       | A1<br>(5) |
|              |                                                                                                                                                                                            | Total                                                                                | 10        |
| ALT          | (i) Use of the product rule:<br>$\frac{2}{3} \times \frac{d}{dx} [(-x)(x-3)] = \frac{2}{3} [(-1)(x-3) + (-x)(1)] \text{ M1}$ $= \frac{2}{3} (-x+3-x)$                                      | M1 A1                                                                                |           |
|              | $=-\frac{4}{3}x+2$ A1                                                                                                                                                                      |                                                                                      |           |
|              | B1 becomes M1<br>No ft on $1^{st}$ A1<br>M1 – states or implies use of $vu'+uv'$<br>M1 – one term correctly differentiated<br>A1 – correct expression<br>A1 – correct answer <b>cao oe</b> |                                                                                      |           |
|              | (ii) Use of the quotient rule:<br>First three marks as in original scheme, then                                                                                                            |                                                                                      |           |
|              | $\frac{d}{dx}(\frac{x+10}{x}) = \frac{x(1) - (x+10)(1)}{x^2}$ M1 – use of $\frac{vu' - u}{v^2}$                                                                                            | <u>uv'</u>                                                                           |           |
|              | A1 – answer as in original scheme, cao                                                                                                                                                     |                                                                                      |           |

| 7<br>(d-50)(d-150)(<0)<br>Critical values: $d = 50, d = 150$ | M1: Attempts to solve<br>3TQ<br>A1: correct CVs                                     | M1<br>A1 |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------|----------|
| x                                                            | <b>M1:</b> graph drawn with<br>'inside' region chosen.<br>Can be implied by shading | M1       |
| Choosing 'inside' region<br>50 < d < 150                     | A1: cao                                                                             | A1       |
| 2d - 400 > d - 325                                           | M1: attempts to solve linear equation by making $d$ the subject                     | M1       |
| <i>d</i> > 75                                                | A1: cao                                                                             | A1       |
| 75 < d < 150<br>$d_1 = 75, d_2 = 150$                        | A1 ft: correct region<br>chosen using <i>their</i> values<br>for d                  | A1       |
|                                                              | Total                                                                               | 7        |

| 8 | 8 | A(8,0), $B(0,-16)$               | <b>B1:</b> both coordinates correct                      | B1 |
|---|---|----------------------------------|----------------------------------------------------------|----|
|   |   | Midpoint (4,-8)                  | <b>A1ft:</b> correct midpoint using <i>their</i> A and B | A1 |
|   |   | $m_{l_2} = -\frac{1}{2}$         | B1: correct gradient oe                                  | B1 |
|   |   | $y - (-8) = -\frac{1}{2}(x - 4)$ | <b>M1:</b> use of $y - y_1 = m(x - x_1)$                 | M1 |
|   |   | (2y+16 = -x+4)<br>C(-12,0)       | A1: correct coordinate for <i>C</i>                      | A1 |
|   |   | $BC = \sqrt{12^2 + 16^2}$        | M1: correct method to work out distance between          | M1 |
|   |   | BC = 20 (sq. units)              | two points.<br>A1ft: correct value of BC.                | A1 |
|   | _ |                                  | Total                                                    | 8  |

| 9   | $3(x+2y-4) = 5x(2x+5)$ $3x+6y-12 = 10x^{2} + 25x$                                                                                                                                                                           | M1: attempts to make y<br>the subject                                                            | M1       |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------|
|     | $y = \frac{10x^2 + 22x + 12}{6} = \frac{5}{3}x^2 + \frac{11}{3}x + 2$                                                                                                                                                       | A2: correct rearranging<br>(Note: A1 for one<br>mistake in rearranging,<br>A0 for more than one) | A2       |
|     | $b^{2} - 4ac = (\frac{11}{3})^{2} - 4(\frac{5}{3})(2)$ $= \frac{121}{9} - \frac{40}{3} = \frac{1}{9}$                                                                                                                       | M1: use of the discriminant.<br>A1: $\frac{1}{9}$ cao                                            | M1<br>A1 |
|     | Since $b^2 - 4ac > 0$ , the curve has two real solutions.                                                                                                                                                                   | A1: statement seen,<br>including underlined<br>section                                           | A1       |
|     |                                                                                                                                                                                                                             | Total                                                                                            | 6        |
| ALT | Candidates may use completing the square (or try to<br>using the discriminant. In this case, award <b>M1</b> for co<br>the use of another correct method), <b>A1</b> for correct es<br>worked out <b>or</b> an explanation. | ompleting the square (or for                                                                     |          |

| 10 | $y = \int (3x^2 + 10x - 5)dx$                   |                                                                  |    |
|----|-------------------------------------------------|------------------------------------------------------------------|----|
|    | $y = \frac{3x^3}{3} + \frac{10x^2}{2} - 5x + b$ | M1: correct method to integrate                                  | M1 |
|    |                                                 | A1: correct integration.<br>Terms need not be                    | A1 |
|    |                                                 | simplified<br><b>B1:</b> constant. Accept any<br>letter          | B1 |
|    | $y = x^3 + 5x^2 - 5x + b$                       |                                                                  |    |
|    | <i>a</i> =5                                     | <b>A1ft:</b> $a =$ the coefficient<br>of <i>their</i> $x^2$ term | A1 |
|    | $-2 = 5^3 + 5(5)^2 - 5(5) + b$                  | M1: substitutes<br>coordinates into <i>their</i> y               | M1 |
|    | -2 = 125 + 125 - 25 + b                         | M1: attempts to solve for <i>their</i> 'b'                       | M1 |
|    | <i>b</i> = -227                                 | <b>A1:</b> cao                                                   | A1 |

| 11 | In the $n^{th}$ week, Alice saves $\pm 3.75$      | M1: correct method to work out 2.5%                 | M1 |
|----|---------------------------------------------------|-----------------------------------------------------|----|
|    |                                                   | A1: £3.75                                           | A1 |
|    | 3.75 = 1.05 + (n-1)(0.1)                          | <b>M1:</b> use of $a + (n-1)d$ to work out <i>n</i> | M1 |
|    | 27 = n - 1                                        |                                                     |    |
|    | <i>n</i> = 28                                     | <b>A1:</b> $n^{th}$ term = 28                       | A1 |
|    | $S_{28} = \frac{28}{2} [2(1.05) + (28 - 1)(0.1)]$ | <b>M1:</b> use of                                   | M1 |
|    |                                                   | $S_n = \frac{n}{2} [2a + (n-1)d]$                   |    |
|    |                                                   | A1ft: correct values substituted                    | A1 |
|    | $=\frac{28}{2}(2.10+2.70)$                        |                                                     |    |
|    | $=\frac{28}{2}(4.80)$                             | M1: correct rearranging                             | M1 |
|    | = £67.20                                          | <b>A1:</b> cao                                      | A1 |
|    |                                                   | Total                                               | 8  |