Paper Reference (complete below)	Centre No.	Surname Initial(s)
6663/01	Candidate No.	Signature

6663 Edexcel GCE Core Mathematics C1 Advanced Subsidiary Mock Paper

Time: 1 hour 30 minutes

<u>Materials required for examination</u> Mathematical Formulae Items included with question papers Nil

Calculators may NOT be used in this examination.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. You must write your answer for each question in the space following the question. If you need more space to complete your answer to any question, use additional answer sheets.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. This paper has ten questions.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the examiner. Answers without working may gain no credit.

Examiner's use only

Team Leader's use only

Question Number	Leave Blank
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
Total	

Turn over

		Leave blank
1.	Solve the inequality	
	$10 + x^2 > x(x - 2) . \tag{2}$	
	(3)	
		_

Leave blank Find $\int \left(x^2 - \frac{1}{x^2} + \sqrt[3]{x}\right) dx$. 2. (4)

		Lea blan	ve ık
3.	Find the value of		
	(a) $81^{\frac{1}{2}}$,		
		1)	
	(b) $81^{\frac{3}{4}}$,	2)	
	(c) $81^{-\frac{3}{4}}$.	_,	
	(c) 81 ⁻¹ .	1)	
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		-	
		_	

4.	A sequence a_1, a_2, a_3, \dots is defined by	Leave blank
	$a_1 = k, a_{n+1} = 4 a_n - 7,$	
	where k is a constant.	
	(a) Write down an expression for a_2 in terms of k . (1)	
	(b) Find a_3 in terms of k, simplifying your answer. (2)	
	Given that $a_3 = 13$,	
	(c) find the value of <i>k</i> .	
	(2)	

Leave blank

5. (a) Show that eliminating *y* from the equations

$$2x + y = 8,$$
$$3x^2 + xy = 1$$

produces the equation

$$x^2 + 8x - 1 = 0.$$

(b) Hence solve the simultaneous equations

$$2x + y = 8,$$
$$3x^2 + xy = 1$$

giving your answers in the form $a + b\sqrt{17}$, where a and b are integers.

(5)

(2)

		Leave blank
5.	continued	onum

6.

$$f(x) = \frac{(2x+1)(x+4)}{\sqrt{x}}, \quad x > 0.$$

(a) Show that f(x) can be written in the form $Px^{\frac{3}{2}} + Qx^{\frac{1}{2}} + Rx^{-\frac{1}{2}}$, stating the values of the constants *P*, *Q* and *R*.

(b) Find f'(x).

(3)

(3)

(c) Show that the tangent to the curve with equation y = f(x) at the point where x = 1 is parallel to the line with equation 2y = 11x + 3.

(3)

Leave blank

		Leave blank
6.	continued	Dialik

			Leave blank
7.	(a)	Factorise completely $x^3 - 4x$. (3)	
	(b)	Sketch the curve with equation $y = x^3 - 4x$, showing the coordinates of the points where the curve crosses the x-axis.	
		(3)	
	(c)	On a separate diagram, sketch the curve with equation	
	(•)		
		$y = (x - 1)^3 - 4(x - 1),$	
		showing the coordinates of the points where the curve crosses the <i>x</i> -axis.	
		(3)	

7.	continued
/•	commueu

 8. The straight line l₁ has equation y = 3x - 6. The straight line l₂ is perpendicular to l₁ and passes through the point (6. 2). (a) Find an equation for l₂ in the form y = mx +c, where m and c are constants. (3) The lines l₁ and l₂ intersect at the point C. (b) Use algebra to find the coordinates of C. (c) Calculate the exact area of triangle ABC. (d) 				Leave blank
 (a) Find an equation for l₂ in the form y = mx +c, where m and c are constants. (3) (3) (b) Use algebra to find the coordinates of C. (c) Calculate the exact area of triangle ABC. 	8.	The straight line l_1 has equation $y = 3x - 6$.		
 (3) The lines l₁ and l₂ intersect at the point C. (b) Use algebra to find the coordinates of C. (3) The lines l₁ and l₂ cross the x-axis at the points A and B respectively. (c) Calculate the exact area of triangle ABC. 		The straight line l_2 is perpendicular to l_1 and passes through the point (6, 2).		
 (b) Use algebra to find the coordinates of <i>C</i>. (3) (c) Calculate the exact area of triangle <i>ABC</i>. 		(a) Find an equation for l_2 in the form $y = mx + c$, where <i>m</i> and <i>c</i> are constants.	(3)	
 (3) (3) (c) Calculate the exact area of triangle <i>ABC</i>. 		The lines l_1 and l_2 intersect at the point <i>C</i> .		
(c) Calculate the exact area of triangle <i>ABC</i> .		(b) Use algebra to find the coordinates of <i>C</i> .	(3)	
		The lines l_1 and l_2 cross the <i>x</i> -axis at the points <i>A</i> and <i>B</i> respectively.		
		(c) Calculate the exact area of triangle <i>ABC</i> .	(4)	

		Leave blank
8.	continued	

9. An arithmetic series has first term *a* and common difference *d*.

(a) Prove that the sum of the first *n* terms of the series is

$$\frac{1}{2}n[2a+(n-1)d].$$
(4)

A polygon has 16 sides. The lengths of the sides of the polygon, starting with the shortest side, form an arithmetic sequence with common difference d cm.

The longest side of the polygon has length 6 cm and the perimeter of the polygon is 72 cm.

Find

(b) the length of the shortest side of the polygon,

(c) the value of d.

(2)

(5)

Leave blank

		Leave
9.	continued	blank

10. For the curve *C* with equation y = f(x),

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x^3 + 2x - 7.$$

(a) Find
$$\frac{d^2 y}{dx^2}$$
.

(b) Show that $\frac{d^2 y}{dx^2} \ge 2$ for all values of *x*.

Given that the point P(2, 4) lies on C,

- (c) find y in terms of x,
- (d) find an equation for the normal to *C* at *P* in the form ax + by + c = 0, where *a*, *b* and *c* are integers.
 - (5)

(5)

(2)

(1)

		Leave blank
10.	continued	
	END	

BLANK PAGE