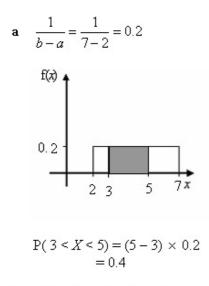
Exercise A, Question 1

Question:

The continuous random variable $X \sim U[2, 7]$. Find **a** $P(3 \le X \le 5)$, **b** $P(X \ge 4)$.

Solution:



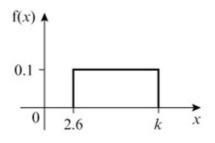
b
$$P(X > 4) = (7 - 4) \times 0.2$$

= 0.6

Exercise A, Question 2

Question:

The continuous random variable X has p.d.f. as shown in the diagram.



Find

- a the value of k,
- $\mathbf{b} \qquad \mathbb{P}(4 \le X \le 7.9) \; .$

Solution:

a Area =1
$$(k-2.6) \times 0.1 = 1$$

 $(k-2.6) = 10$
 $k = 12.6$

b $P(4 \le X \le 7.9) = (7.9 - 4) \times 0.1$ = 0.39

Exercise A, Question 3

Question:

The continuous random variable X has p.d.f. $f(x) = \begin{cases} k, & -2 \le x \le 6, \\ 0, & \text{otherwise.} \end{cases}$ Find a the value of k, b $P(-1.3 \le X \le 4.2)$.

Solution:

a Area = 1

$$k \times (6 - (-2)) = 1$$

 $8k = 1$
 $k = \frac{1}{8}$

b
$$P(-1.3 \le X \le 4.2) = \frac{1}{8} \times (4.2 - (-1.3))$$

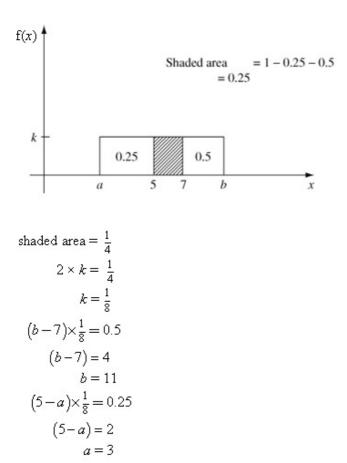
= 0.6875

Exercise A, Question 4

Question:

The continuous random variable $Y \sim U[a, b]$. Given that $P(Y < 5) = \frac{1}{4}$ and $P(Y > 7) = \frac{1}{2}$, find the value of a and the value of b.

Solution:



Exercise A, Question 5

Question:

The continuous random variable $X \sim U[2, 8]$.

- a Write down the distribution of Y = 2X + 5.
- **b** Find $\mathbb{P}(12 \le Y \le 20)$.

Solution:

a $2 \times 2 + 5 = 9$ $2 \times 8 + 5 = 21$ $Y \sim U[9, 21]$ **b** For $Y, \frac{1}{b-a} = \frac{1}{21-9} = \frac{1}{12}$ $P(12 < Y < 20) = (20-12) \times \frac{1}{12}$ $= \frac{2}{3}$

Exercise B, Question 1

Question:

The continuous variable Y is uniformly distributed over the interval [-3, 5]. Find:

- Е(Х), a ь
- Var(X),
- $\mathbb{E}(X^2)$, с
- d the cumulative distribution function of X, for all x.

Solution:

a
$$E(X) = \frac{5 + (-3)}{2}$$

 $= 1$
b $Var(X) = \frac{(5 - (-3))^2}{12}$
 $= 5\frac{1}{3}$
c $Var(X) = E(X^2) - (E(X))^2$
 $5\frac{1}{3} = E(X^2) - 1$
 $E(X^2) = 6\frac{1}{3}$
d $F(x) = \int_{-3}^{x} \frac{1}{5 - (-3)} dt$
 $= \left[\frac{t}{8}\right]_{-3}^{x}$
 $= \frac{x + 3}{8}$
 $F(x) = \begin{cases} 0 & x < -3 \\ \frac{x + 3}{8} & -3 \le x \le 5 \\ 1 & x > 5 \end{cases}$

Exercise B, Question 2

Question:

Find E(X) and Var(X) for the following probability density functions.

$$\mathbf{a} \quad \mathbf{f}(x) = \begin{cases} \frac{1}{4}, & 1 \le x \le 5, \\ 0, & \text{otherwise.} \end{cases}$$
$$\mathbf{b} \quad \mathbf{f}(x) = \begin{cases} \frac{1}{8}, & -2 \le x \le 6, \\ 0, & \text{otherwise.} \end{cases}$$

Solution:

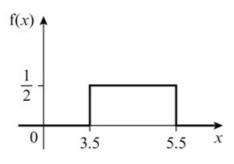
a
$$E(X) = \frac{5+1}{2}$$

= 3
 $Var(X) = \frac{(5-1)^2}{12}$
= $1\frac{1}{3}$
b $E(X) = \frac{6+(-2)}{2}$
= 2
 $Var(X) = \frac{(6-(-2))^2}{12}$
= $5\frac{1}{3}$

Exercise B, Question 3

Question:

The continuous random variable X has p.d.f as shown in the diagram.



Find:

- a E(X),
- **b** Var(X),
- $\epsilon = \mathbb{E}(X^2)$,
- **d** the cumulative distribution function of X, for all x.

Solution:

a
$$E(X) = \frac{5.5 + 3.5}{2}$$

 $= 4.5$
b $Var(X) = \frac{(5.5 - 3.5)^2}{12}$
 $= \frac{1}{3}$
c $Var(X) = E(X^2) - (E(X))^2$
 $\frac{1}{3} = E(X^2) - 20.25$
 $E(X^2) = 20\frac{7}{12} = 20.6 (3 \text{ s.f.})$
d $F(x) = \int_{3.5}^{x} \frac{1}{5.5 - 3.5} dt$
 $= \left[\frac{t}{2}\right]_{3.5}^{x}$
 $= \frac{x}{2} - \frac{3.5}{2}$
 $= \frac{x}{2} - 1.75$
 $F(x) = \begin{cases} 0 & x < 3.5 \\ \frac{x}{2} - 1.75 & 3.5 \le x \le 5.5 \\ 1 & x > 5.5 \end{cases}$

Exercise B, Question 4

Question:

The continuous random variable $Y \sim U[a, b]$. Given E(Y) = 1 and $Var(Y) = \frac{4}{3}$,

find the value of a and the value of b.

Solution:

 $E(Y) = \frac{a+b}{2} = 1$ a+b=2 (1) $Var(Y) = \frac{(b-a)^2}{12} = \frac{4}{3}$ $(b-a)^2 = 16 (2)$

Solving equations (1) and (2) simultaneously

$$b = 2-a$$

$$(2-a-a)^{2} = 16$$

$$(2-2a) = \pm 4$$

$$2-2a = 4$$

$$a = -1$$

$$b = 2-(-1)$$

$$a = 3$$

$$b = 2-(-1)$$

$$a = -1$$

$$b = 2-3$$

$$a = -1$$

Since a < b a = -1 and b = 3

Page 1 of 1

Solutionbank S2 Edexcel AS and A Level Modular Mathematics

Exercise B, Question 5

Question:

The continuous random variable X has probability density function

$$f(x) = \begin{cases} \frac{1}{6}, & -1 \le x \le 5, \\ 0, & \text{otherwise.} \end{cases}$$

Given that Y = 4X - 6, find E(Y) and Var(Y).

Solution:

$$E(X) = \frac{5 + (-1)}{2}$$

= 2
$$Var(X) = \frac{(5 - (-1))^2}{12}$$

= 3
$$E(Y) = 4E(X) - 6$$

= 8 - 6
= 2
$$Var(Y) = 16 Var(X)$$

ar(Y) = 16 Var/ = 48

Exercise B, Question 6

Question:

The random variable X is the length of a side of a square. $X \sim U[4.5, 5.5]$. The random variable Y is the area of the square. Find E(Y).

Solution:

$$E(Y) = E(X^{2}) \qquad \text{or } \int_{4.5}^{5.5} x^{2} dx = \left[\frac{x^{3}}{3}\right]_{4.5}^{5.5}$$

$$E(X) = \frac{4.5 + 5.5}{2} = \left[\frac{5.5^{3}}{3}\right] - \left[\frac{4.5^{3}}{3}\right]$$

$$= 25\frac{1}{12}$$

$$= 5$$

$$Var(X) = \frac{(5.5 - 4.5)^{2}}{12}$$

$$= \frac{1}{12}$$

$$Var(X) = E(X^{2}) - (E(X))^{2}$$

$$\frac{1}{12} = E(X^{2}) - 25$$

$$E(X^{2}) = 25\frac{1}{12}$$

Exercise B, Question 7

Question:

In a computer game an alien appears every 2 seconds. The player stops the alien by pressing a key. The object of the game is to stop the alien as soon as it appears. Given that the player actually presses the key T s after the alien first appears, a simple model of the game assumes that T is a continuous uniform random variable defined over the interval [0, 1].

- a Write down $P(T \le 0.2)$.
- **b** Write down E(T).
- c Use integration to find Var (7).

Solution:

$$\frac{1}{b-a} = \frac{1}{1-0} = 1$$

a P(T < 0.2) = (0.2-0)×1
= 0.2

b
$$E(T) = 0.5$$

c
$$\operatorname{Var}(T) = \int_{0}^{1} t^{2} dt - 0.5^{2}$$

= $\left[\frac{t^{3}}{3}\right]_{0}^{1} - 0.25$
= $\frac{1}{12}$

Exercise C, Question 1

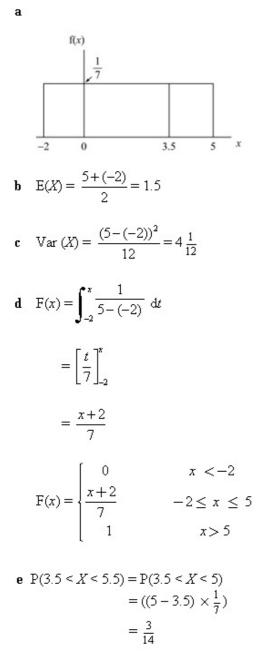
Question:

The continuous random variable X is uniformly distributed over the interval [-2, 5].

a Sketch the probability density function f(x) of X.

- Find
- $\mathbf{b} = \mathbf{E}(X),$
- c = Var(X),
- **d** the cumulative distribution function of X, for all x,
- e $P(3.5 \le X \le 5.5)$,
- $\mathbf{f} = \mathbb{P}(X=4)$.

Solution:

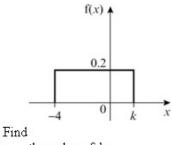


$$\mathbf{f} \ \mathbb{P}(X=4) = 0$$

Exercise C, Question 2

Question:

The continuous random variable X has p.d.f. as shown in the diagram.



- a the value of k,
- **b** $P(-2 \le X \le -1)$,
- c = E(X),d = Var(X),
- e the cumulative distribution function of X, for all x.

```
Solution:
```

```
a Area = 1 so

(k+4) \times 0.2 = 1
0.2 \ k + 0.8 = 1
k = 1
b P(-2 < X < -1) = 1 \times 0.2 = 0.2
c E(X) = \frac{-4+1}{2} = -1.5
d Var(X) = \frac{(b-a)^2}{12} = \frac{(1-(-4))^2}{12} = 2\frac{1}{12}
e

F(x) = \int_{-4}^{x} \frac{1}{1-(-4)} dt
= \left[\frac{t}{5}\right]_{-4}^{x}
= \frac{x+4}{5}
F(x) = \begin{cases} 0 & x < -4 \\ \frac{x+4}{5} & -4 \le x \le 1 \\ 1 & x > 1 \end{cases}
```

Exercise C, Question 3

Question:

The continuous random variable Y is uniformly distributed on the interval $a \le Y \le b$. Given E(Y) = 2 and Var(Y) = 3. Find

- **a** the value of a and the value of b,
- $\mathbf{b} = \mathbb{P}(X \ge 1.8).$

Solution:

a
$$E(Y) = \frac{a+b}{2} = 2$$
 so $a+b=4$ so $a=4-b$
Var $(Y) = \frac{(b-a)^2}{12} = 3$

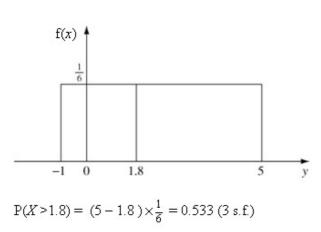
Substituting for a gives $(2b-4)^2 = 36$ $(2b-4) = \pm 6$ b = 5 or b = -1

$$a = -1$$
 $a = 5$

but
$$b \ge a$$

 $b = 5$ $a = -1$

b



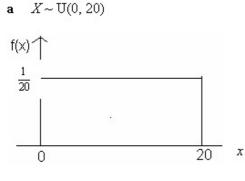
Exercise C, Question 4

Question:

A child has a pair of scissors and a piece of string 20 cm long, which has a mark on one end. The child cuts the string, at a randomly chosen point, into two pieces. Let X represent the length of the piece of string with the mark on it.

- a Write down the name of the probability distribution of X and sketch the graph of its probability density function.
- **b** Find the values of E(X) and Var(X).
- Using your model, calculate the probability that the shorter piece of string is at least 8 cm long.

Solution:



b

$$E(X) = \frac{20+0}{2} = 10$$

Var
$$(X) = \frac{(20-0)^2}{12} = \frac{400}{12} = 33\frac{1}{3}$$

c
$$P(8 \le X \le 12) = (12 - 8) \times \frac{1}{20} = 0.2$$

Exercise C, Question 5

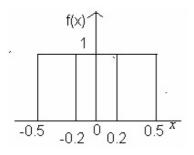
Question:

Joan records the temperature every day. The highest temperature she recorded was 29 °C to the nearest degree. Let X represent the error in the measured temperature.

- a Suggest a suitable model for the distribution of X.
- **b** Using your model calculate the probability that the error will be less than 0.2 °C.
- ε Find the variance of the error in the measured temperature.

Solution:

b



 $P(-0.2 \le X \le 0.2) = 0.4 \ge 1 = 0.4$

c Var
$$(X) = \frac{(b-a)^2}{12} = \frac{(0.5 - (-0.5))^2}{12} = \frac{1}{12}$$

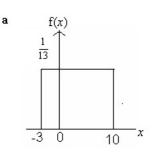
Exercise C, Question 6

Question:

Jameil catches a bus to work every morning. According to the timetable the bus is due at 9 a.m., but Jameil knows that the bus can arrive at a random time between three minutes early and ten minutes late. The random variable X represents the time, in minutes, after 9 a.m. when the bus arrives.

- \mathbf{a} Suggest a suitable model for the distribution of X and specify it fully.
- **b** Calculate the mean value of X.
- c Find the cumulative distribution function of X.
- Jameil will be late for work if the bus arrives after 9.05 a.m.
- \mathbf{d} Find the probability that Jameil is late for work.

Solution:



$$\begin{aligned} X &\sim U(-3, 10) \\ f(x) &= \begin{cases} \frac{1}{13} & -3 \le x \le 10 \\ 0 & \text{otherwise} \end{cases} \end{aligned}$$

b Mean = E(X) =
$$\frac{-3+10}{2}$$
 = 3.5 minutes
c
F(x) = $\int_{-3}^{x} \frac{1}{13} dt$
= $\left[\frac{t}{13}\right]_{-3}^{x}$
= $\frac{x+3}{13}$
 $\begin{bmatrix} 0 & x < -3 \end{bmatrix}$

$$F(x) = \begin{cases} \frac{x+3}{13} & -3 \le x \le 10\\ 1 & x > 10 \end{cases}$$

d
$$P(5 < X < 10) = (10 - 5) \times \frac{1}{13} = \frac{5}{13}$$

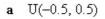
Exercise C, Question 7

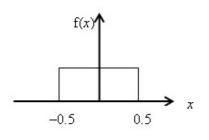
Question:

A plumber measures, to the nearest cm, the lengths of pipes.

- a Suggest a suitable model to represent the difference between the true lengths and the measured lengths.
- **b** Find the probability that for a randomly chosen rod the measured length will be within 0.2 cm of the true length.
- c Three pipes are selected at random. Find the probability that all three pipes will be within 0.2 cm of the true length.

Solution:





 $P(-0.2 \le X \le 0.2) = (0.2 - (-0.2)) \times 1 = 0.4$

c P(3 pipes between -0.2 and 0.2) = $0.4^3 = 0.064$

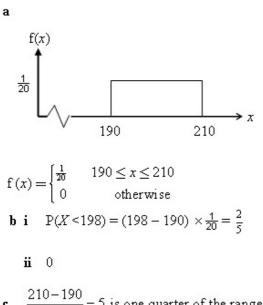
Exercise C, Question 8

Question:

A coffee machine dispenses coffee into cups. It is electronically controlled to cut off the flow of coffee randomly between 190 ml and 210 ml. The random variable X is the volume of coffee dispensed into a cup.

- \mathbf{a} Specify the probability density function of X and sketch its graph.
- **b** Find the probability that the machine dispenses
 - i less than 198 ml,
 - ii exactly 198 ml.
- c Calculate the inter-quartile range of X.

Solution:



c
$$\frac{210-190}{4} = 5$$
 is one quarter of the range
Q₁ = 190 + 5 = 195 Q₃ = 210 - 5 = 205
IQR = 205 - 195 = 10

Exercise C, Question 9

Question:

Write down the name of the distribution you would recommend as a suitable model for each of the following situations.

- a the difference between the true height and the height measured, to the nearest cm, of randomly chosen people.
- b the heights of randomly selected 18-year-old females.

Solution:

- **a** Uniform
- **b** Normal