Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Examination style paper

Exercise A, Question 1

Question:

A particle P of mass 0.2 kg is moving along a straight horizontal line with constant speed $12 \mathrm{~m} \mathrm{~s}^{-1}$. Another particle Q of mass 0.8 kg is moving in the same direction as P, along the same straight horizontal line, with constant speed $2 \mathrm{~m} \mathrm{~s}^{-1}$. The particles collide. Immediately after the collision, Q is moving with speed $6 \mathrm{~m} \mathrm{~s}^{-1}$.
a Find the speed of P immediately after the collision.
b State whether or not the direction of motion of P is changed by the collision.
c Find the magnitude of the impulse exerted on Q in the collision.

Solution:

a Conservation of linear momentum
$0.2 \times 12+0.8 \times 2=0.2 \times v+0.8 \times 6$
$0.2 v=-0.8 \Rightarrow v=-4$
the speed of P immediately after the collision is $4 \mathrm{~m} \mathrm{~s}^{-1}$
b The direction of motion of P has been changed by the collision.
c For $Q, I=0.8 \times 6-0.8 \times 2=3.2$
the magnitude of the impulse on Q is 3.2 N s
© Pearson Education Ltd 2008

Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Examination style paper

Exercise A, Question 2

Question:

A particle P of weight W newtons is attached to one end of a light inextensible string. The O other end of the string is attached to a fixed point O. The string is taut and makes an angle 30° with the vertical. The particle P is held in equilibrium under gravity by a force of magnitude 12 N acting in a direction perpendicular to the string, as shown. Find
a the tension in the string,
b the value of W.

Solution:

$\mathbf{a} \mathrm{R}(\rightarrow) T \cos 60^{\circ}=12 \cos 30^{\circ}$
$T=12 \sqrt{ } 3(\approx 20.8)$
the tension in the string is $12 \sqrt{ } 3 \mathrm{~N}$
b
$\mathrm{R}(\uparrow) W=T \sin 60^{\circ}+12 \sin 30^{\circ}$

$$
=12 \sqrt{ } 3 \times \frac{\sqrt{ } 3}{2}+12 \times \frac{1}{2}=24
$$

Solutionbank M1

Edexcel AS and A Level Modular Mathematics

Examination style paper

Exercise A, Question 3

Question:

A car is moving along a straight horizontal road. At time $t=0$, the car passes a sign
A with speed $8 \mathrm{~m} \mathrm{~s}^{-1}$ and this speed is maintained for 6 s . The car then accelerates uniformly from $8 \mathrm{~m} \mathrm{~s}^{-1}$ to $12 \mathrm{~m} \mathrm{~s}^{-1}$ in 9 s . The speed of $12 \mathrm{~m} \mathrm{~s}^{-1}$ is then maintained until the car passes a second sign B. The distance between A and B is 390 m .
a Sketch a speed-time graph to illustrate the motion of the car as it travels from A to B.
b Find the time the car takes to travel from A to B.
c Sketch a distance-time graph to illustrate the motion of the car as it travels from A to B.

Solution:

a

b Let the time travelled at $12 \mathrm{~m} \mathrm{~s}^{-1}$ be T seconds.
$6 \times 8+\frac{1}{2}(8+12) \times 9+12 \times T=390$
$12 T=390-48-90=252 \Rightarrow T=21$
the time the car takes to travel from A to B is $36 s$
c

© Pearson Education Ltd 2008

Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Examination style paper

Exercise A, Question 4

Question:

Two particles A and B are connected by a light inextensible string which passes over a fixed smooth pulley. The mass of A is 4 kg and the mass of B is m, where $m>4 \mathrm{~kg}$. The system is released from rest with the string taut and the hanging parts of the string vertical, as shown.
After release, the tension in the string is $\frac{1}{4} m g$.
a Find the magnitude of the acceleration of the particles.
b Find the value of m.

$A(4 \mathrm{~kg})$
c State how you have used the fact that the string is inextensible.

Solution:

a For B
$\mathrm{R}(\downarrow) \quad m g-T=m a$
$\sqrt{m} g-\frac{1}{4} \sqrt{m} g \quad=\lceil m a$
$a \quad=\frac{3}{4} g$
the magnitude of the acceleration of the particles is $\frac{3}{4} g$
b For A

$$
\begin{array}{ll}
\mathrm{R}(\uparrow) \quad T-4 g & =4 a \\
\frac{1}{4} m \sqrt{g}-4 \sqrt{g} & =4 \times \frac{3}{4} \sqrt{g} \\
m & =28
\end{array}
$$

\mathbf{c} the accelerations of the particles have the same magnitude.
© Pearson Education Ltd 2008

Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Examination style paper

Exercise A, Question 5

Question:

A particle of mass 0.8 kg is moving under the action of two forces \mathbf{P} and \mathbf{Q}. The force \mathbf{P} has magnitude 4 N and the force \mathbf{Q} has magnitude 6 N . The angle between \mathbf{P} and \mathbf{Q} is 110°, as shown. The resultant of \mathbf{P} and \mathbf{Q} is \mathbf{F}. Find
a the angle between the direction of \mathbf{F} and the direction of \mathbf{P}.
b the magnitude of the acceleration of the particle.

Solution:

(i)
$\mathrm{R}(\rightarrow) \quad X=4-6 \cos 70^{\circ}=1.947879 \ldots$
$\mathrm{R}(\uparrow) \quad Y=6 \sin 70^{\circ}=5.638155 \ldots$
$\tan \theta=\frac{Y}{X}=2.89451 \ldots$
$\theta \quad=70.9^{\circ}$ (3 s.f. $)$
the angle between the direction of \boldsymbol{F} and the direction of \boldsymbol{P} is 70.9° (3 s.f.)
(ii)

```
\(|F|^{2}=X^{2}+Y^{2}=35.583 \ldots\)
\(F \quad=|F|=\sqrt{ } 35.583 \ldots=5.96515 \ldots\)
\(F=m a\)
```

$5.96515 \ldots=0.8 a \Rightarrow a=7.456 \ldots$
the acceleration of P is $7.46 \mathrm{~m} \mathrm{~s}^{-2}$ (3 s.f.)
© Pearson Education Ltd 2008

Solutionbank M1

Edexcel AS and A Level Modular Mathematics

Examination style paper

Exercise A, Question 6

Question:

A small stone, S, of mass 0.3 kg , slides with constant acceleration down a line of greatest slope of a rough plane, which is inclined at 30° to the horizontal. The stone passes through a point X with speed $1.5 \mathrm{~m} \mathrm{~s}^{-1}$. Three seconds later it passes through a point Y, where $X Y=6 \mathrm{~m}$, as shown. Find.
a the acceleration of S,

b the magnitude of the normal reaction of the plane on S,
c the coefficient of friction between S and the plane.

Solution:

a $u=1.5, t=3, s=6, a=$?
$s=u t+\frac{1}{2} a t^{2}$
$6=1.5 \times 3+\frac{1}{2} a \times 9$
$1.5=4.5 a \Rightarrow a=\frac{1}{3}$
the acceleration of S is $\frac{1}{3} \mathrm{~ms}^{-2}$
b R (\uparrow) $R=0.3 g \cos 30^{\circ}=2.546 \ldots$
the magnitude of the normal reaction of the plane on S is 2.5 N (2 s.f.)
c Friction is limiting $F=\mu R=\mu \times 0.3 \mathrm{~g} \cos 30^{\circ}$
$R(\Sigma) 0.3 g \sin 30^{\circ}-\mu 0.3 g \cos 30^{\circ}=0.3 \times \frac{1}{3}$
$\mu=\frac{g \sin 30^{\circ}-\frac{1}{3}}{g \cos 30^{\circ}}=0.538 \ldots$

The coefficient of friction between S and the planeis 0.54 (2 s.f.)
© Pearson Education Ltd 2008

Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Examination style paper

Exercise A, Question 7

Question:

In this question the unit vectors \mathbf{i} and \mathbf{j} are due east and north respectively and position vectors are given with respect to a fixed origin O.

A ship S is moving with constant velocity $(2 \mathbf{i}-3 \mathbf{j}) \mathrm{km} \mathrm{h}^{-1}$ and a ship R is moving with constant velocity $6 \mathbf{i} \mathrm{~km} \mathrm{~h}^{-1}$.
a Find the bearing along which S is moving.
At noon S is at the point with position vector $8 \mathbf{i} \mathrm{~km}$ and R is at O. At time t hours after noon, the position vectors of S and T are $\mathbf{s k m}$ and $\mathbf{r} \mathrm{km}$ respectively.
\mathbf{b} Find \mathbf{s} and \mathbf{r}, in terms of t.

At time T hours, R is due north-east of S. Find
\mathbf{c} the value of T,
d the distance between S and R at time T hours.

Solution:

$$
\tan \theta=\frac{3}{2} \Rightarrow \theta \approx 56.3^{\circ}
$$

the bearing along which S is moving is 146
b
$s=8 i+(2 i-3 j) t$
$r=6 t i$
c At time $t=T, r-s=(4 T-8) i+3 T j$
If S is north-east of R,
$\frac{3 T}{4 T-8}=1 \Rightarrow T=8$
d When $T=8$

$$
\begin{array}{ll}
r-s & =24 i+24 j \\
S R^{2}=24^{2}+24^{2} & \Rightarrow S R=24 \sqrt{ } 2
\end{array}
$$

The distance between S and R is $24 \sqrt{ } 2 \mathrm{~km}$.
© Pearson Education Ltd 2008

Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Examination style paper

Exercise A, Question 8

Question:

A uniform steel girder $A B$ has length 8 m and weight 400 N . A load of weight 200 N is attached to the girder at A and a load of weight W newtons is attached to the girder at B. The girder and the loads hang in equilibrium, with the girder horizontal. The girder is held in equilibrium by two cables attached to the girder at P and Q, where $A P=2 \mathrm{~m}$ and $Q B=x \mathrm{~m}$, as shown. The girder is modelled as a uniform rod, the loads as particles and the cables as light inextensible strings.
a Show that the tension in the cable at Q is $\left(\frac{400+6 W}{6-x}\right) \mathrm{N}$.

Given that the tension in the cable attached at P is five times the tension in the cable attached to Q,
b find W in terms of x,
\mathbf{c} deduce that $x<2$.

Solution:

a
$M(P) Y(6-x)+200 \times 2=400 \times 2+W \times 6$
$Y(6-x)=800-400+6 W$
$Y=\frac{400+6 W}{6-x}$
the tension in the cable at Q is $\left(\frac{400+6 W}{6-x}\right) \mathrm{N}$
b
$\mathrm{R}(\uparrow) \quad X+Y=600+W$
$X \quad=600+W-\frac{400+6 W}{6-x}$
$=\frac{3200-600 x-w x}{6-x}$
$X=5 Y \Rightarrow 3200-600 x-W x=5(400+6 W)$
$1200-600 x$
$=(30+x) W$

W
$=\frac{600(2-x)}{30+x}$
$\mathbf{c} W \square \geq \square 0 \square \Rightarrow \square \mathrm{x} \square \geq \square 2$
© Pearson Education Ltd 2008

