Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Moments

Exercise A, Question 1

Question:

Calculate the moment about P of each of these forces acting on a lamina.

Solution:

[^0]
Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Moments

Exercise A, Question 2

Question:

Calculate the moment about P of each of these forces acting on a lamina.

Solution:

Moment $=7 \times 1.5=10.5 \mathrm{Nm}$ clockwise
© Pearson Education Ltd 2008

Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Moments

Exercise A, Question 3

Question:

Calculate the moment about P of each of these forces acting on a lamina.

Solution:

Moment $=2 \times 6.5=13 \mathrm{Nm}$ anticlockwise

[^1]
Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Moments

Exercise A, Question 4

Question:

Calculate the moment about P of each of these forces acting on a lamina.

Solution:

© Pearson Education Ltd 2008

Line of action passes through P so the distance is zero.
Moment $=0 \mathrm{Nm}$
(No turning effect)

Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Moments

Exercise A, Question 5

Question:

Calculate the moment about P of each of these forces acting on a lamina.

Solution:

Draw in the right angled triangle.
Perpendicular distance $=5 \times \sin 30^{\circ}$
Moment $=4 \times 5 \sin 30^{\circ}$
$=10 \mathrm{Nm}$ anticlockwise
© Pearson Education Ltd 2008

Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Moments

Exercise A, Question 6

Question:

Calculate the moment about P of each of these forces acting on a lamina.

Solution:

Draw in the right angled triangle.
The angle inside the triangle is $180^{\circ}-140^{\circ}$ $=40^{\circ}$,
so the distance $=5 \times \sin 40^{\circ}$
Moment $=3.6 \times 5 \sin 40^{\circ}$
$\approx 11.6 \mathrm{Nm}$ clockwise

[^2]
Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Moments

Exercise A, Question 7

Question:

Calculate the moment about P of each of these forces acting on a lamina.

Solution:

> Distance $=7.2 \times \sin 45^{\circ}$
> Moment $=6 \times 7.2 \sin 45^{\circ}$
> $\approx 30.5 \mathrm{Nm}$ anticlockwise
© Pearson Education Ltd 2008

Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Moments

Exercise A, Question 8

Question:

Calculate the moment about P of each of these forces acting on a lamina.

Solution:

© Pearson Education Ltd 2008

Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Moments

Exercise A, Question 9

Question:

Calculate the moment about P of each of these forces acting on a lamina.

Solution:

$$
\begin{aligned}
\text { Distance } & =2.8 \times \cos 60^{\circ} \\
\text { Moment } & =9.5 \times 2.8 \quad \cos 60^{\circ} \\
& =13.3 \mathrm{Nm} \text { clockwise }
\end{aligned}
$$

© Pearson Education Ltd 2008

Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Moments

Exercise A, Question 10

Question:

Calculate the moment about P of each of these forces acting on a lamina.

Solution:

© Pearson Education Ltd 2008

Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Moments

Exercise B, Question 1

Question:

These diagrams show sets of forces acting on a light rod. For each rod, calculate the sum of the moments about P.

Solution:

a
 \cup (Total of moments for forces acting anticlockwise about P):

$$
\begin{aligned}
(1+3) \times 2 & =8 \mathrm{Nm} \\
\text { Sum of moments } & =8-3 \\
& =5 \mathrm{Nm} \text { anticlockwise }
\end{aligned}
$$

b

d

e

f

© Pearson Education Ltd 2008

Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Moments

Exercise B, Question 2

Question:

These diagrams show forces acting on a lamina. In each case, find the sum of the moments of the set of forces about P.

Solution:

b

$$
\begin{aligned}
U 4 \times 2 & =8 \mathrm{Nm} \\
\bigcup 3 \times 3 & =9 \mathrm{Nm} \\
\text { Sum of moments } & =9-8 \\
& =1 \mathrm{Nm} \text { anticlockwise }
\end{aligned}
$$

c

$$
\begin{array}{ll}
U 6 \times 4 & =24 \mathrm{Nm} \\
\cup 7 \times 2 & =14 \mathrm{Nm} \\
\text { Sum of moments } & =24-14 \\
& =10 \mathrm{Nm} \text { clockwise }
\end{array}
$$

d

e

$$
\begin{aligned}
U 3 \times 0.9 & =2.7 \mathrm{Nm} \\
\cup 4 \times 0.8 & =3.2 \mathrm{Nm} \\
\text { Sum of moments } & =3.2-2.7 \\
& =0.5 \mathrm{Nm} \text { anticlockwise }
\end{aligned}
$$

$\circlearrowright 5 \times 0.8=4 \mathrm{Nm}$
U $6 \times\left(2.5 \times \sin 65^{\circ}=13.594 \ldots \mathrm{Nm}\right.$
or $\left(6 \times \sin 65^{\circ}\right)$
$\times 2.5$
or $\left(6 \times \cos 25^{\circ}\right)$
$\times 2.5$
Sum of moments $=13.594 . \ldots-4$
$\approx 9.59 \mathrm{Nm}$ anticlockwise
© Pearson Education Ltd 2008

Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Moments

Exercise C, Question 1

Question:

$A B$ is a uniform rod of length 5 m and weight 20 N . In these diagrams $A B$ is resting in a horizontal position on supports at C and D. In each case, find the magnitudes of the reactions at C and D.

Solution:

a

b

c

d

© Pearson Education Ltd 2008

Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Moments

Exercise C, Question 2

Question:

Each of these diagrams shows a light rod in equilibrium in a horizontal position under the action of a set of forces.

Solution:

a

b

c

d

© Pearson Education Ltd 2008

Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Moments

Exercise C, Question 3

Question:

Jack and Jill are playing on a see-saw made from a uniform plank $A B$ of length 5 m pivoted at M, the mid-point of $A B$. Jack has mass 35 kg and Jill has mass 28 kg . Jill sits at A. Where must Jack sit for the plank to be in equilibrium when horizontal?

Solution:

Suppose that Jack sits $x \mathrm{~m}$ from B.
Taking moments about the pivot (M):
$28 g \times 2.5=35 g \times(2.5-x)$
$\Rightarrow 28 \times 2.5=35(2.5-x)$
$5(2.5-x)=4 \times 2.5=10$
$2.5-x=2, \Rightarrow x=0.5$
Jack sits 0.5 m from B
© Pearson Education Ltd 2008

Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Moments

Exercise C, Question 4

Question:

A uniform $\operatorname{rod} A B$ of length 3 m and mass 12 kg is pivoted at C, where $A C=1 \mathrm{~m}$. Calculate the vertical force that must be applied at A to maintain equilibrium with the rod horizontal.

Solution:

Suppose that the force required is $V \mathrm{~N}$ acting vertically downwards at A.
Taking moments about the pivot (C):
$V \times 1=0.5 \times 12 g$
$\Rightarrow V=6 g=59 \mathrm{~N}(2$ s.f. $)$
© Pearson Education Ltd 2008

Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Moments

Exercise C, Question 5

Question:

A broom consists of a broomstick of length 130 cm and mass 5 kg and a broomhead of mass 5.5 kg attached at one end. By modelling the broomstick as a rod and the broomhead as a particle, find where a support should be placed so that the broom will balance horizontally.

Solution:

Let the support be $x \mathrm{~m}$ from the broomhead.
Taking moments about the support:

$$
\begin{array}{ll}
5.5 g \times x & =5 g \times(0.65-x) \\
5.5 x & =5 \times 0.65-5 x \\
10.5 x & =3.25 \\
x & \approx 0.31
\end{array}
$$

The support should be 31 cm from the broomhead.

Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Moments

Exercise C, Question 6

Question:

A uniform $\operatorname{rod} A B$ of length 4 m and weight 20 N is suspended horizontally by two vertical strings attached at A and at B. A particle of weight 10 N is attached to the rod at point C, where $A C=1.5 \mathrm{~m}$. Find the magnitudes of the tensions in the two strings.

Solution:

Let the tensions in the two strings be T_{A} and T_{B} respectively.
$\mathrm{R}(\uparrow)$
$T_{A}+T_{B}=10+20=30$
Taking moments about point A :

$$
\begin{aligned}
10 \times 1.5+20 \times(1.5+0.5) & =4 \times T_{B} \\
\Rightarrow 4 T_{B}=15+40=55, T_{B} & =13.75 \mathrm{~N} \\
\quad \text { and } T_{A} & =16.25 \mathrm{~N}
\end{aligned}
$$

Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Moments

Exercise C, Question 7

Question:

A uniform plank $A B$ of length 5 m and mass 30 kg is resting horizontally on supports at C and D, where $A C=1 \mathrm{~m}$ and $A D=3.5 \mathrm{~m}$. When a particle of mass 14 kg is attached to the rod at point E the magnitude of the reaction at C is equal to the magnitude of the reaction at D. Find the distance $A E$.

Solution:

© Pearson Education Ltd 2008

Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Moments

Exercise C, Question 8

Question:

A uniform $\operatorname{rod} A B$ has length 4 m and mass 8 kg . It is resting in a horizontal position on supports at points C and D were $A C=1 \mathrm{~m}$ and $A D=2.5 \mathrm{~m}$. A particle of mass m kg is placed at point E where $A E=3.3 \mathrm{~m}$. Given that rod is about to tilt about D, calculate the value of m .

Solution:

If the rod is about to turn about D then the reaction at C is zero.
Taking moments about point D :

$$
\begin{aligned}
8 g \times 0.5 & =m \quad g \times 0.8 \\
\Rightarrow m & =5
\end{aligned}
$$

© Pearson Education Ltd 2008

Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Moments

Exercise C, Question 9

Question:

A uniform bar $A B$ of length 6 m and weight 40 N is resting in a horizontal position on supports at points C and D where $A C=2 \mathrm{~m}$ and $A D=5 \mathrm{~m}$. When a particle of weight 30 N is attached to the bar at point E the bar is on the point of tilting about C. Calculate the distance $A E$.

Solution:

If the bar is about to tilt about C then the reaction at D is zero.
Let the distance $A E=x \mathrm{~m}$
Taking moments about C :

$$
\begin{aligned}
& 40 \times 1=30 \times(2-x), 40=60-30 x \\
& \Rightarrow 30 x=20, x=\frac{2}{3}
\end{aligned}
$$

The distance $A E=\frac{2}{3} \mathrm{~m}$

Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Moments

Exercise C, Question 10

Question:

A plank $A B$ of mass 12 kg and length 3 m is in equilibrium in a horizontal position resting on supports at C and D where $A C=0.7 \mathrm{~m}$ and $D B=1.1 \mathrm{~m}$. A boy of mass 32 kg stands on the plank at point E. The plank is about to tilt about D. By modelling the plank as a uniform rod and the boy as a particle, calculate the distance $A E$.

Solution:

Let the distance $A E$ be $x \mathrm{~m}$.
If the plank is about to tilt about D then $R_{C}=0$.
Taking moments about D :
$12 g \times 0.4=32 g \times(x-1.9)$
$12 \times 0.4=32 x-32 \times 1.9$
$32 x=4.8+60.8=65.6$
$\Rightarrow x=65.6 \div 32=2.05 \mathrm{~m}$
E is 2.05 m from A

Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Moments

Exercise C, Question 11

Question:

A uniform $\operatorname{rod} A B$ has length 5 m and weight 20 N . The rod is resting on supports at points C and D where $A C=2 \mathrm{~m}$ and $B D=1 \mathrm{~m}$.
a Find the magnitudes of the reactions at C and D.

A particle of weight 12 N is placed on the rod at point A.
b Show that this causes the rod to tilt about C.

A second particle of weight 12 N is placed on the rod at E to hold it in equilibrium.
c How far must E be from A ?

Solution:

a

$\mathrm{R}(\uparrow)$
$R_{C}+R_{D}=20$
Taking moments about C :

$$
20 \times 0.5=R_{D} \times 2, R_{D}=5 \mathrm{~N}
$$

R_{C}
$=15 \mathrm{~N}$
b Adding the weight of 12 N :

Taking moments about C :
$20 \times 0.5=12 \times 2+R_{D} \times 2$
$10=24+2 R_{D}$
$\Rightarrow R_{D}$ is negative, which is impossible, therefore there is an anticlockwise moment about $C-$ the rod will tilt.
c Adding the second particle:

Let the distance $A E$ be $x \mathrm{~m}$.
If the system is just about to tilt about C, taking moments about C and $R_{D}=0$

$$
\begin{aligned}
12 \times(x-2)+20 \times 0.5 & =12 \times 2 \\
12 x-24+10 & =24 \\
12 x & =38 \\
\Rightarrow x &
\end{aligned}
$$

The second particle needs to be 3.17 m from A to prevent tilting.

[^3]
Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Moments

Exercise D, Question 1

Question:

A non-uniform rod $A B$ of length 4 m and weight 6 N rests horizontally on two supports at A and B. Given that the centre of mass of the rod is 2.4 m from the end A, find the reactions at the two supports.

Solution:

$\mathrm{R}(\uparrow)$
$6=R_{A}+R_{B}$
Taking moments about A :

$$
\begin{aligned}
6 \times 2.4 & =4 \times R_{B} \\
\Rightarrow R_{B} & =3.6 \mathrm{~N} \\
R_{A} & =2.4 \mathrm{~N}
\end{aligned}
$$

The reactions at A and B are 2.4 N and 3.6 N respectively.

Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Moments

Exercise D, Question 2

Question:

A non-uniform bar $A B$ of length 5 m is supported horizontally on supports at A and B. The reactions at these supports are $3 g \mathrm{~N}$ and $7 g \mathrm{~N}$ respectively. Find the position of the centre of mass.

Solution:

Let m be the mass of the bar.
$\mathrm{R}(\uparrow) m \quad g=3 g+7 g$
\Rightarrow the mass of the bar is 10 kg
Let the centre of mass be $x \mathrm{~m}$ from A :
Taking moments about A :
$m g \times x=7 g \times 5$
$\Rightarrow m x=35,10 x=35, x=3.5 \mathrm{~m}$
The centre of mass is 3.5 m from A.

Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Moments

Exercise D, Question 3

Question:

A non-uniform plank $A B$ of length 4 m and weight 120 N is pivoted at its mid-point. The plank is in equilibrium in a horizontal position with a child of weight 200 N sitting at A and a child of weight 300 N sitting at B. By modelling the plank as a rod and the two children as particles find the distance of the centre of mass of the plank from A.

Solution:

Let the centre of mass be $x \mathrm{~m}$ from A.
Taking moments about the mid-point:
$120 \times(2-x)+200 \times 2=300 \times 2$
$240-120 x+400=600$
$120 x=40$
$\Rightarrow x=\frac{40}{120}=\frac{1}{3}$
The centre of mass is $\frac{1}{3} \mathrm{~m}$ from A.

Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Moments

Exercise D, Question 4

Question:

A non-uniform rod $A B$ of length 5 m and mass 15 kg rests horizontally suspended from the ceiling by two vertical strings attached to C and D, where $A C=1 \mathrm{~m}$ and $A D=3.5 \mathrm{~m}$.
a Given that the centre of mass is at E where $A E=3 \mathrm{~m}$, find the magnitudes of the tensions in the strings.

When a particle of mass 10 kg is attached to the rod at F the rod is just about to rotate about D.
b Find the distance $A F$.

Solution:

a

b

Taking moments about C :
$T_{D} \times 2.5=15 g \times 2$
$2.5 T_{D}=30 \mathrm{~g}$
$\Rightarrow T_{D} \quad=12 g=118 \mathrm{~N}$ (3 s.f.)
$\mathrm{R}(\uparrow)$
$T_{C}+T_{D}=15 g, T_{C}=3 g=29.4 \mathrm{~N}$

With the particle attached at F, T_{C} is zero because the rod is about to rotate about D.
Let the distance $A F=x \mathrm{~m}$.
Taking moments about D :

$$
\left.\begin{array}{rl}
15 g \times 0.5 & =10 g \times(x-(1+2+0.5)) \\
& =10 g \times(x-3.5) \\
7.5 g & \\
42.5 & \\
40 g x-35 g \\
\Rightarrow x &
\end{array}\right) 4.25
$$

The distance $A F$ is 4.25 m

Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Moments

Exercise E, Question 1
Question:

A plank $A E$, of length 6 m and weight 100 N , rests in a horizontal position on supports at B and D, where $A B=1 \mathrm{~m}$ and $D E=1.5 \mathrm{~m}$. A child of weight 145 N stands at C, the mid-point of $A E$, as shown in the diagram above. The child is modelled as a particle and the plank as a uniform rod. The child and the plank are in equilibrium. Calculate
a the magnitude of the force exerted by the support on the plank at B,
b the magnitude of the force exerted by the support on the plank at D.

The child now stands at a different point F on the plank. The plank is in equilibrium and on the point of tilting about D.
c Calculate the distance $D F$.

Solution:

a Taking moments about the point D :
\Rightarrow since the child and the plank are in equilibrium,
$1.5 \times 100+1.5 \times 145=3.5 \times F_{B}, 150+217.5=3.5 \times F_{B}, \Rightarrow F_{B}=367.5 \div 3.5=105 \mathrm{~N}$
b $\mathrm{R}(\uparrow)$, the child and the plank are in equilibrium, so

$$
\begin{aligned}
& 100+145=F_{B}+F_{D} \\
& 245=105+F_{D} \\
& \Rightarrow F_{D}=245-105=140 \mathrm{~N}
\end{aligned}
$$

c

If the plank is about to tilt about D, then $F_{B}=0$ and the child must be standing to the right of D.

Let the distance $D F$ be $x \mathrm{~m}$. Taking moments about D :
$\Rightarrow 100 \times 1.5=145 \times x, \quad x=\frac{100 \times 1.5}{145} \approx 1.03 \mathrm{~m} \quad(=103 \mathrm{~cm})$

Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Moments

Exercise E, Question 2

Question:

A uniform $\operatorname{rod} A B$ has length 4 m and weight 150 N . The rod rests in equilibrium in a horizontal position, smoothly supported at points C and D, where $A C=1 \mathrm{~m}$ and $A D=2.5 \mathrm{~m}$ as shown in the diagram above. A particle of weight $W \mathrm{~N}$ is attached to the rod at a point E where $A E=x$ metres. The rod remains in equilibrium and the magnitude of the reaction at C is now equal to the magnitude of the reaction at D.
a Show that $W=\frac{150}{7-4 x}$
b Hence deduce the range of possible values of x.

Solution:

a Since the rod is uniform, the centre of mass is at the mid-point.
Taking moments about A :

$$
\begin{aligned}
W x+150 \times 2 & =R \times 1+R \times 2.5 \\
W x+300 & =3.5 R
\end{aligned}
$$

$\mathrm{R}(\uparrow)$, equilibrium $\Rightarrow W+150=R+R, 2 R=W+150$
Hence $R=\frac{W+150}{2}$, and $W x+300=\frac{7}{2} \times \frac{W+150}{2}$

$$
\Rightarrow 4(W x+300)=7 W+7 \times 150,4 W x+1200=7 W+1050
$$

$$
1200-1050=7 W-4 W x
$$

$$
W(7-4 x)=150, W=\frac{150}{7-4 x}
$$

$$
\begin{array}{ll}
\mathbf{b} x \geq 0 \text { and } \frac{150}{7-4 x}>0 \\
\Rightarrow 7-4 x & >0 \\
4 x & <7 \\
x & <\frac{7}{4} \\
x & <1.75 \\
\text { So } 0 \leq x & <1.75
\end{array}
$$

© Pearson Education Ltd 2008

Solutionbank M1

Edexcel AS and A Level Modular Mathematics

Moments

Exercise E, Question 3

Question:

A uniform plank $A B$ has mass 40 kg and length 4 m . It is supported in a horizontal position by two smooth pivots. One pivot is at the end A and the other is at the point C where $A C=3 \mathrm{~m}$, as shown in the diagram above. A man of mass 80 kg stands on the plank which remains in equilibrium. The magnitude of the reaction at A is twice the magnitude of the reaction at C. The magnitude of the reaction at C is $R \mathrm{~N}$. The plank is modelled as a rod and the man is modelled as a particle.
a Find the value of R.
b Find the distance of the man from A.
c State how you have used the modelling assumption that
ithe plank is uniform,
ii the plank is a rod,
iii the man is a particle.

Solution:

a
$\mathrm{R}(\uparrow) 3 R=80 g+40 g$
$R \quad=40 g=392 \mathrm{~N}$
b Taking moments about A : $80 g \times x+40 g \times 2=40 g \times 3$

$$
80 g \times x=40 g, \Rightarrow x=\frac{1}{2}=0.5 \mathrm{~m}
$$

c (i) Since the plank is uniform, the weight acts at centre of plank.
(ii) Since the plank is a rod, the plank remains straight.
(iii) Since the man is a particle, his weight acts at a single point

Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Moments

Exercise E, Question 4

Question:

A non-uniform rod $A B$ has length 4 m and weight 150 N . The rod rests horizontally in equilibrium on two smooth supports C and D, where $A C=1 \mathrm{~m}$ and $D B=0.5 \mathrm{~m}$, as shown in the diagram above. The centre of mass of $A B$ is x metres from A. A particle of weight $W \mathrm{~N}$ is placed on the rod at A. The rod remains in equilibrium and the magnitude of the reaction of C on the rod is 100 N .
a Show that $550+7 W=300 x$.

The particle is now removed from A and placed on the rod at B. The rod remains in equilibrium and the reaction of C on the rod now has magnitude 52 N .
b Obtain another equation connecting W and x.
c Calculate the value of x and the value of W.

Solution:

a

$\mathrm{R}(\uparrow) 100+R=W+150, R=W+50$

Taking moments about A,

$$
\begin{aligned}
100 \times 1+(W+50) \times 3.5 & =150 \times x \\
150 x & =100+175+3.5 W \\
275+3.5 W & =150 x \\
550+7 W & =300 x
\end{aligned}
$$

b

$\mathrm{R}(\uparrow) 52+R=150+W, R=150+W-52=98+W$
Taking moments about $B: 52 \times 3+(98+W) \times 0.5=150 \times(4-x)$
$156+49+0.5 W=600-150 x$
doubling, $410+W=1200-300 x, W=790-300 x$
c Solving the simultaneous equations $\rightarrow W=790-(550+7 W)$,

$$
8 W=790-550=240 \Rightarrow W=30
$$

$$
\Rightarrow 410+30=1200-300 x, 300 x=760, x=2.53 \text { (} 3 \text { s.f. })
$$

© Pearson Education Ltd 2008

Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Moments

Exercise E, Question 5
Question:

A lever consists of a uniform steel rod $A B$ of weight 100 N and length 2 m , which rests on a small smooth pivot at a point C. A load of weight 1700 N is suspended from the end B of the rod by a rope. The lever is held in equilibrium in a horizontal position by a vertical force applied at the end A, as shown in the diagram above. The rope is modelled as a light string.
a Given that $B C=0.25 \mathrm{~m}$ find the magnitude of the force applied at A.
The position of the pivot is changed so that the rod remains in equilibrium when the force at A has magnitude 150 N .
b Find, to the nearest centimetre, the new distance of the pivot from B.

Solution:

a Let the force applied at A be V.

Taking moments about C : $V \times 1.75+100 \times 0.75=1700 \times 0.25$
$\Rightarrow 1.75 \mathrm{~V}+75=425,1.75 \mathrm{~V}=350, V=200 \mathrm{~N}$
b If the distance $B C=x$

Taking moments about C : $150(1+1-x)+100(1-x)=1700 x$

Heinemann Solutionbank: Mechanics 1 M1
$\Rightarrow 300-150 x+100-100 x=1700 x \Rightarrow 400-250 x=1700 x$
400

$$
=1950 x, x=\frac{400}{1950} \approx 0.21 \mathrm{~m}(2 \text { s.f. })
$$

© Pearson Education Ltd 2008

Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Moments

Exercise E, Question 6

Question:

A plank $A B$ has length 4 m . It lies on a horizontal platform, with the end A lying on the platform and the end B projecting over the edge, as shown above. The edge of the platform is at the point C.

Jack and Jill are experimenting with the plank. Jack has mass 48 kg and Jill has mass 36 kg . They discover that if Jack stands at B and Jill stands at A and $B C=1.8 \mathrm{~m}$, the plank is in equilibrium and on the point of tilting about C.
a By modelling the plank as a uniform rod, and Jack and Jill as particles, find the mass of the plank.
They now alter the position of the plank in relation to the platform so that, when Jill stands at B and Jack stands at A, the plank is again in equilibrium and on the point of tilting about C.
b Find the distance $B C$ in this position.

Solution:

a Let the mass of the plank be M. Since the plank is uniform, its centre of mass is at its mid-point.

Taking moments about $C: 48 g \times 1.8=M g \times 0.2+36 g \times 2.2$

$$
\begin{aligned}
& 86.4 g=0.2 M g+79.2 g, 86.4=0.2 M+79.2 \\
& 0.2 M=86.4-79.2=7.2 \Rightarrow M=36 \mathrm{~kg}
\end{aligned}
$$

b Let the distance $B C$ be x

Taking moments about C : $36 g x+36 g(x-2)=48 g(4-x)$
\Rightarrow (dividing by the common factor $12 g$)
$3 x+3(x-2)=4(4-x), \quad 6 x-6=16-4 x$
$\Rightarrow 10 x=22, \quad x=2.2 \mathrm{~m}$

Solutionbank M1

Edexcel AS and A Level Modular Mathematics

Moments

Exercise E, Question 7

Question:

A plank of wood $A B$ has mass 12 kg and length 5 m . It rests in a horizontal position on two smooth supports. One support is at the end A. The other is at the point $C, 0.5 \mathrm{~m}$ from B, as shown in the diagram above. A girl of mass 30 kg stands at B with the plank in equilibrium.
a By modelling the plank as a uniform rod and the girl as a particle, find the reaction on the plank at A.

The girl gets off the plank. A boulder of mass $m \mathrm{~kg}$ is placed on the plank at A and a man of mass 93 kg stands on the plank at B. The plank remains in equilibrium and is on the point of tilting about C.
b By modelling the plank again as a uniform rod, and the man and the boulder as particles, find the value of m.

Solution:

a

Taking moments about $C: R_{A} \times 4.5+30 g \times 0.5=12 g \times 2$

$$
\begin{aligned}
& R_{A} \times 4.5=24 g-15 g=9 g \\
& \Rightarrow R_{A}=2 g=19.6 \mathrm{~N}
\end{aligned}
$$

b

The plank is about to tilt about $C \Rightarrow$ reaction at $A=0$
Taking moments about C : $m g \times 4.5+12 g \times 2=93 g \times 0.5$
$\Rightarrow 4.5 m=93 \times 0.5-24=22.5, \quad m=$ ie 5
© Pearson Education Ltd 2008

Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Moments

Exercise E, Question 8
Question:

A plank $A B$ has mass 50 kg and length 4 m . A load of mass 25 kg is attached to the plank at B. The loaded plank is held in equilibrium, with $A B$ horizontal, by two vertical ropes attached at A and C, as shown in the diagram. The plank is modelled as a uniform rod and the load as a particle. Given that the tension in the rope at C is four times the tension in the rope at A, calculate
a the tension in the rope at C,
b the distance $C B$.

Solution:

a Let the tension in the rope at A be $T \mathrm{~N}$
$\mathrm{R}(\uparrow) T+4 T=50 g+25 g, 5 T=75 g$
$\Rightarrow T=15 g$, so tension at C is $60 g \mathrm{~N}=588 \mathrm{~N}$
bet the distance $B C$ be x

Taking moments about C : $15 g \times(4-x)+25 g \times x=50 g \times(2-x)$

$$
\begin{aligned}
& 60-15 x+25 x=100-50 x \\
& 60 x=40, x=\frac{2}{3} \mathrm{~m}
\end{aligned}
$$

Solutionbank M1
 Edexcel AS and A Level Modular Mathematics

Moments

Exercise E, Question 9

Question:

A uniform beam $A B$ has weight 200 N and length 5 m . The beam rests in equilibrium in a horizontal position on two smooth supports. One support is at end A and the other is at a point C on the beam, where $B C=1 \mathrm{~m}$, as shown in the diagram. The beam is modelled as a uniform rod.
a Find the reaction on the beam at C.

A woman of weight 500 N stands on the beam at the point D. The beam remains in equilibrium. The reactions on the beam at A and C are now equal.
b Find the distance $A D$.

Solution:

Taking moments about A :

$$
\begin{array}{ll}
200 \times 2.5 & =R_{C} \times 4 \\
R_{C} & =125 \mathrm{~N}
\end{array}
$$

b

Let the distance $A D$ be x
$\mathrm{R}(\uparrow) 2 R=500+200=700$

$$
R=350 \mathrm{~N}
$$

Taking moments about $A: R \times 4=200 \times 2.5+500 \times x$,

Heinemann Solutionbank: Mechanics 1 M1
Page 2 of 2

$$
1400=4 R=500+500 x, 900=500 x, x=1.8 \mathrm{~m}
$$

© Pearson Education Ltd 2008

[^0]: © Pearson Education Ltd 2008

[^1]: © Pearson Education Ltd 2008

[^2]: © Pearson Education Ltd 2008

[^3]: © Pearson Education Ltd 2008

