Solutionbank C2
 Edexcel Modular Mathematics for AS and A-Level

Practice paper

Exercise 1, Question 1

Question:

The sector $A O B$ is removed from a circle of radius 5 cm .
The $\angle A O B$ is 1.4 radians and $\mathrm{OA}=\mathrm{OB}$.
(a) Find the perimeter of the sector $A O B$. (3)
(b) Find the area of sector $A O B$. (2)

Solution:

(a)

Arc length $=r \theta=5 \times 1.4=7 \mathrm{~cm}$
Perimeter $=10+\operatorname{Arc}=17 \mathrm{~cm}$
(b) Sector area $=\frac{1}{2} r^{2} \quad \theta=\frac{1}{2} \times 5^{2} \times 1.4=17.5 \mathrm{~cm}^{2}$
© Pearson Education Ltd 2008

Solutionbank C2
 Edexcel Modular Mathematics for AS and A-Level

Practice paper

Exercise 1, Question 2

Question:

Given that $\log _{2} x=p$:
(a) Find $\log _{2}\left(8 x^{2}\right)$ in terms of p. (4)
(b) Given also that $p=5$, find the value of x. (2)

Solution:
(a) $\log _{2} x=p$
$\log _{2}\left(8 x^{2}\right)=\log _{2} 8+\log _{2} x^{2}=3+2 \log _{2} x=3+2 p$
(b) $\log _{2} x=5 \quad \Rightarrow \quad x=2^{5} \Rightarrow x=32$
© Pearson Education Ltd 2008

Solutionbank C2
 Edexcel Modular Mathematics for AS and A-Level

Practice paper

Exercise 1, Question 3

Question:

(a) Find the value of the constant a so that $(x-3)$ is a factor of $x^{3}-\mathrm{ax}-6$. (3)
(b) Using this value of a, factorise $x^{3}-\mathrm{ax}-6$ completely. (4)

Solution:

(a) Let $\mathrm{f}(x)=x^{3}-\mathrm{ax}-6$

If $(x-3)$ is a factor then $\mathrm{f}(3)=0$
i.e. $0=27-3 a-6$

So $3 a=21 \Rightarrow a=7$
(b) $x^{3}-7 x-6$ has $(x-3)$ as a factor, so
$x^{3}-7 x-6=(x-3)\left(x^{2}+3 x+2\right)=(x-3)(x+2)(x+1)$
© Pearson Education Ltd 2008

Solutionbank C2
 Edexcel Modular Mathematics for AS and A-Level

Practice paper

Exercise 1, Question 4

Question:

(a) Find the coefficient of x^{11} and the coefficient of x^{12} in the binomial expansion of $(2+x)^{15}$. (4)

The coefficient of x^{11} and the coefficient of x^{12} in the binomial expansion of (2+kx $)^{15}$ are equal.
(b) Find the value of the constant k. (3)

Solution:

(a) $(2+x)^{15}=\ldots\binom{15}{11} 2^{4} x^{11}+\binom{15}{12} 2^{3} x^{12}+\ldots$

Coefficient of $x^{11}=\binom{15}{11} \times 16=1365 \times 16=21840$
Coefficient of $x^{12}=\binom{15}{12} \times 8=455 \times 8=3640$
(b) $21840 k^{11}=3640 k^{12}$

So $k=\frac{21840}{3640}$
i.e. $k=6$
© Pearson Education Ltd 2008

Solutionbank C2

Edexcel Modular Mathematics for AS and A-Level

Practice paper

Exercise 1, Question 5

Question:

(a) Prove that:
$\frac{\cos ^{2} \theta}{\sin \theta+\sin ^{2} \theta} \equiv \frac{1-\sin \theta}{\sin \theta}, 0<\theta<180^{\circ}$. (4)
(b) Hence, or otherwise, solve the following equation for $0<\theta<180^{\circ}$:
$\frac{\cos ^{2} \theta}{\sin \theta+\sin ^{2} \theta}=2$
Give your answers to the nearest degree. (4)

Solution:

(a) LHS $=\frac{\cos ^{2} \theta}{\sin \theta+\sin ^{2} \theta}$
$=\frac{1-\sin ^{2} \theta}{\sin \theta+\sin ^{2} \theta}\left(\right.$ using $\left.\sin ^{2} \theta+\cos ^{2} \theta \equiv 1\right)$
$=\frac{(1-\sin \theta)(1+\sin \theta)}{\sin \theta(1+\sin \theta)}($ factorising $)$
$=\frac{1-\sin \theta}{\sin \theta}($ cancelling $[1+\sin \theta])$
$=$ RHS
(b) $2=\frac{\cos ^{2} \theta}{\sin \theta+\sin ^{2} \theta}$

$$
\begin{aligned}
& \Rightarrow \quad 2=\frac{1-\sin \theta}{\sin \theta} \\
& \Rightarrow \quad 2 \sin \theta=1-\sin \theta \text { (can multiply by } \sin \theta \because 0<\theta<180) \\
& \Rightarrow \quad 3 \sin \theta=1 \\
& \Rightarrow \quad \sin \theta=\frac{1}{3}
\end{aligned}
$$

So $\theta=19.47 \quad \ldots \quad{ }^{\circ}, 160.5 \quad \ldots \quad{ }^{\circ}=19^{\circ}, 161^{\circ}$ (to nearest degree)

Solutionbank C2
 Edexcel Modular Mathematics for AS and A-Level

Practice paper
Exercise 1, Question 6

Question:

(a) Show that the centre of the circle with equation $x^{2}+y^{2}=6 x+8 y$ is $(3,4)$ and find the radius of the circle. (5)
(b) Find the exact length of the tangents from the point $(10,0)$ to the circle. (4)

Solution:

(a) $x^{2}-6 x+y^{2}-8 y=0$
$\Rightarrow \quad(x-3)^{2}+(y-4)^{2}=9+16$
i.e. $(x-3)^{2}+(y-4)^{2}=5^{2}$

Centre (3, 4), radius 5
(b) Distance from $(3,4)$ to $(10,0)=\sqrt{7^{2}+4^{2}}=\sqrt{65}$

Length of tangent $=\sqrt{\sqrt{65}^{2}-5^{2}}=\sqrt{40}=2 \sqrt{10}$
© Pearson Education Ltd 2008

Solutionbank C2
 Edexcel Modular Mathematics for AS and A-Level

Practice paper

Exercise 1, Question 7

Question:

A father promises his daughter an eternal gift on her birthday. On day 1 she receives $£ 75$ and each following day she receives $\frac{2}{3}$ of the amount given to her the day before. The father promises that this will go on for ever.
(a) Show that after 2 days the daughter will have received $£ 125$. (2)
(b) Find how much money the father should set aside to ensure that he can cover the cost of the gift. (3)

After k days the total amount of money that the daughter will have received exceeds $£ 200$.
(c) Find the smallest value of k. (5)

Solution:

(a) Day $1=£ 75$, day $2=£ 50$, total $=£ 125$
(b) $a=75, r=\frac{2}{3}$-geometric series
$S_{\infty}=\frac{a}{1-r}=\frac{75}{1-\frac{2}{3}}$
Amount required $=£ 225$
(c) $S_{k}=\frac{a\left(1-r^{k}\right)}{1-r}$

Require $\frac{75\left[1-\left(\frac{2}{3}\right)^{k}\right]}{1-\frac{2}{3}}>200$
i.e. $225\left[1-\left(\frac{2}{3}\right)^{k}\right]>200$

$$
\Rightarrow 1-\left(\frac{2}{3}\right)^{k}>\frac{8}{9}
$$

$$
\Rightarrow \quad \frac{1}{9}>\left(\frac{2}{3}\right)^{k}
$$

Take logs: $\log \left(\frac{1}{9}\right)>k \log \left(\frac{2}{3}\right)$
Since $\log \left(\frac{2}{3}\right)$ is negative, when we divide by this the inequality will change around.

So $k>\frac{\log \left(\frac{1}{9}\right)}{\log \left(\frac{2}{3}\right)}$
i.e. $k>5.419$

So need $k=6$
© Pearson Education Ltd 2008

Solutionbank C2

Edexcel Modular Mathematics for AS and A-Level

Practice paper

Exercise 1, Question 8

Question:

Given $I=\int_{1}^{3}\left(\frac{1}{x^{2}}+3 \sqrt{ } x\right) \mathrm{d} x$:
(a) Use the trapezium rule with the table below to estimate I to 3 significant figures. (4)
$x 11.5 \quad 2 \quad 2.5 \quad 3$
$y 44.1194 .4934 .9035 .307$
(b) Find the exact value of I. (4)
(c) Calculate, to 1 significant figure, the percentage error incurred by using the trapezium rule as in part (a) to estimate I. (2)

Solution:
(a) $h=0.5$
$I \approx \frac{0.5}{2}[4+2(4.119+4.493+4.903)+5.307]$
$=\frac{1}{4}[36.337]$
$=9.08425$
(b) $I=\int_{1}^{3}\left(x^{-2}+3 x^{\frac{1}{2}}\right) \mathrm{d} x$
$=\left\{\frac{x^{-1}}{-1}+\frac{3 x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{1}^{3}$
$=\left[-\frac{1}{x}+2 x^{\frac{3}{2}}\right\rceil 1^{3}$
$=\left(-\frac{1}{3}+2 \times 3 \sqrt{ } 3\right)-(-1+2)$
$=6 \sqrt{ } 3-\frac{4}{3}$
(c) Percentage error $=\frac{\left|6 \sqrt{ } 3-\frac{4}{3}-9.08425\right|}{6 \sqrt{ } 3-\frac{4}{3}} \times 100=0.279 \quad \ldots \quad \%=0.3 \%$

Solutionbank C2
 Edexcel Modular Mathematics for AS and A-Level

Practice paper

Exercise 1, Question 9

Question:

The curve C has equation $y=6 x^{\frac{7}{3}}-7 x^{2}+4$.
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$. (2)
(b) Find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$. (2)
(c) Use your answers to parts (a) and (b) to find the coordinates of the stationary points on C and determine their nature (9)

Solution:

(a) $y=6 x^{\frac{7}{3}}-7 x^{2}+4$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=6 \times \frac{7}{3} x^{\frac{4}{3}}-14 x$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=14 x^{\frac{4}{3}}-14 x$
(b) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{56}{3} x^{\frac{1}{3}}-14$
(c) $\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Rightarrow x^{\frac{4}{3}}-x=0 \Rightarrow x\left(x^{\frac{1}{3}}-1\right)=0$

So $x=0$ or 1
$x=0 \Rightarrow \frac{\mathrm{~d}^{2} y}{\mathrm{~d}^{2}}=-14<0 \therefore(0,4)$ is a maximum
$x=1 \Rightarrow \frac{\mathrm{~d}^{2} y}{\mathrm{~d}^{2}}=\frac{56}{3}-14>0 \therefore(1,3)$ is a minimum
© Pearson Education Ltd 2008

