Mark Scheme (Provisional)

Summer 2021

Pearson Edexcel International Advanced Level In Statistics S3 Paper WST03/01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www. pearson.com/uk

Summer 2021
Question Paper Log number P63153A
Publications Code WST03_01_2106_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- \quad All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme	Notes	Marks
3.			
(a)	$\bar{x}=\frac{1}{2}(11.52+13.75)=12.635$	12.635 (may be implied by correct CI)	B1
		Use of 1.96	B1
	$\begin{aligned} & \left(\frac{\sigma}{\sqrt{n}}=\right) \frac{13.75-12.635}{1.96}(=0.56887 \ldots) \\ & \left(\frac{\sigma}{\sqrt{n}}=\right) \frac{13.75-11.52}{2 \times 1.96}(=0.56887 \ldots) \end{aligned}$	For attempt at standard error (may be implied by awrt 0.569)	M1
		Use of 1.6449 or better (1.644853...from calc) Use of 1.64 or 1.65 is B0	B1
	$12.635 \pm 1.6449 \times 0.56887 \ldots$	For $(\text { their } \bar{x}) \pm(\text { their } 1.6449)\left(\text { their } \frac{\sigma}{\sqrt{n}}\right)$	M1
	90\% CI is (11.699..., 13.5707...)	awrt (11.7,13.6) from correct working Correct answer with no working scores B1B1M1B0M1A1	A1
			(6)
(b)	$\begin{aligned} & 4 \times 0.9^{3} \times 0.1 \\ & =0.2916 \end{aligned}$	$\begin{aligned} & 4 p^{3}(1-p)(\text { where } 0<p<1) \\ & \text { awrt } 0.292 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
			(2)
			Total 8

Question Number	Scheme					Notes	Marks
5.(a)	Relief of symptoms is either a "success" or a "failure". The probability the medicine being a success is constant. Samples from different medical practices are independent.					Any 2. Context required in one assumption.	B1 B1
							(2)
(b)	$\text { Mean }=\frac{0 \times 4+1 \times 6+2 \times 3+\ldots+8 \times 2}{50}=3.54^{*}$					At least two correct terms on the numerator and 50 on the denominator, fully correct expression or $\frac{177}{50}$ dep on M1 scored cso.	M1 Alcso
							(2)
(c)	$p=\frac{3.54}{8}=0.4425$					Can be implied by at least 1 correct value for f or g.	B1
	$\begin{aligned} & f=50 \times \mathrm{C}_{4}^{8} \times 0.4425^{4} \times 0.5575^{4}=12.96 \\ & g=50 \times 0.4425^{8}=0.07 \end{aligned}$					Use of $\operatorname{Bin}(50, p)$ for M1, Allow awrt 12.96, awrt 0.07	M1A1A1
							(4)
(d)	H_{0} : Binomial distribution is a suitable model H_{1} : Binomial distribution is not a suitable model					Both hypotheses correct If parameters used then B0.	B1
						Combining 0,1,2 or 5,6,7,8.	M1
	No of succe sses	O	E	$\frac{(O-E)^{2}}{E}$	$\frac{O^{2}}{E}$	M1 for attempting $\frac{(O-E)^{2}}{E}$ or $\frac{O^{2}}{E}$ with at least 2 correct expressions or 2 correct values to 2 sf .	M1
	0,1,2	13	11.66	0.154	14.494		
	3	12	13.07	0.088	11.018		
	4	10	12.96	0.676/7	7.716		
	5,6,7, 8	15	12.31	0.588/7	18.278		
		50	50	1.506	51.506		
	$\sum \frac{(O-E)^{2}}{E}=\sum \frac{O^{2}}{E}-50=1.50 \ldots$					awrt 1.5 (calculator: 1.50498...)	A1
	$v=4-2=2, \chi_{2}^{2}(10 \%)=4.605$					2 can be implied by 4.605 seen	B1B1f.t.
	Insufficient evidence to reject H_{0}					For correct non-contextual statement linking their test statistic and their cv.	M1
	Data is consistent with a binomial distribution (oe)					A correct comment suggesting that binomial model is suitable / good fit. Hypotheses wrong way around scores A0 here. Condone parameters here.	A1
							(8)
							Total 16

Question Number	Scheme	Notes	Marks
6(a)	$W=B-1.1 R$	May be implied by correct mean or variance	M1
	$\begin{aligned} & W \sim \mathrm{~N}\left(55-1.1 \times 51,1.3^{2}+1.1^{2} \times 1.2^{2}\right) \quad \text { or } \\ & W \sim \mathrm{~N}(-1.1,3.4324) \end{aligned}$	(\pm)1.1, awrt 3.43 (may be seen in standardisation)	A1, A1
	$\mathrm{P}(W<0) \quad=\mathrm{P}\left(Z<\frac{0+1.1}{\sqrt{3.4324}}\right)$	Standardising with their mean and their sd. leading to a probability >0.5	M1
	$=\mathrm{P}(Z<0.5937 . .$.		
	$=0.7224$ or 0.7237	awrt 0.72	A1
			(5)
(b)	$X=B_{1}-B_{2}$	May be implied by correct mean or variance	M1
	$X \sim \mathrm{~N}\left(55-55,2 \times 1.3^{2}\right) \quad$ or $\quad X \sim \mathrm{~N}(0,3.38)$	0,3.38	A1, A1
	$\mathrm{P}\left(Z>\frac{1-0}{\sqrt{3.38}}\right)$ or $\mathrm{P}\left(Z<\frac{-1-0}{\sqrt{3.38}}\right)$	dep on $1^{\text {st }}$ M1 for standardising with their mean and their sd.	dM1
	$\mathrm{P}(\|X\|>1) \quad=2 \times \mathrm{P}(X>1)$	For $2 \times$ seen or implied	M1
	$=2 \times \mathrm{P}(Z>0.5439 \ldots)=2 \times(1-0.7054)$	$\begin{aligned} & 2 \times 0.2946 \text { or } \\ & 2 \times 0.2932 \text { (calc) } \\ & \hline \end{aligned}$	
	$=0.5892$	awrt 0.59	A1
			(6)
(c)	$\begin{aligned} & V=B_{1}+B_{2}+B_{3}+B_{4}+B_{5}+B_{6}+B_{7}+B_{8}+B_{9}+B_{10}+S \\ & Y=R_{1}+R_{2}+R_{3}+R_{4}+R_{5}+R_{6}+R_{7}+R_{8}+R_{9}+R_{10}+R_{11}+S \end{aligned}$	May be implied by either correct distribution	M1
	$V \sim \mathrm{~N}(553,16.94)$ and $Y \sim \mathrm{~N}(564,15.88)$	Both correct	A1
	$\begin{aligned} & D=Y-V \text { so } \\ & D \sim \mathrm{~N}\left(11 \times 51-10 \times 55,11 \times 1.2^{2}+10 \times 1.3^{2}+2 \times 0.2^{2}\right) \text { or } \\ & D \sim \mathrm{~N}(11,32.82) \end{aligned}$	Attempt at their difference for the mean, and their sum for the variance.	M1
		11 and awrt 32.8	A1
	$\mathrm{P}(D>0) \quad=\mathrm{P}\left(Z>\frac{0-11}{\sqrt{32.82}}\right)$	dep on $1^{\text {st }} \mathrm{M} 1$ for standardising using their mean and the standard deviation leading to a probability >0.5	dM1
	$=\mathrm{P}(Z>-1.920 \ldots)$		
	$=0.9726$	awrt 0.973	A1
			(6)
			Total 17

