Mark Scheme (Results)

Summer 2021

Pearson Edexcel International Advanced Level In Statistics S2 Paper WST02/01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www. pearson.com/uk

Summer 2021
Question Paper Log number P63151A
Publications Code WST02_01_2106_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol \int will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer

Question Number	Scheme		Marks
Throughout the paper the candidates may use different letters to the ones given in the mark scheme.			
1. (a) (i) (ii)	[$X \sim$ the number of pansy seeds that do not germinate or $Y=$ the number...that do germinate] $X \sim \mathrm{~B}(20,0.05) \quad$ or $\quad Y \sim \mathrm{~B}(20,0.95)$		B1
	$\mathrm{P}(X \leqslant 4)-\mathrm{P}(X \leqslant 2)=0.9974-0.9245$ or		
	$\binom{20}{3} 0.05^{3} \times 0.95^{17}+\binom{20}{4} 0.05^{4} \times$	$=0.05958 \ldots+0.01332 \ldots$	M1
	$=0.072909 \ldots$	awrt $\underline{0.0729}$	A1
	$\mathrm{P}(X \leqslant 1) \quad$ or $\quad \mathrm{P}(Y \geqslant 19)=20 \times(0.95)^{19}(0.05)+(0$		M1
	$=0.7358 \quad=0.735839 \ldots$	awrt $\underline{\underline{0.736}}$	A1 (5)
(b)	[Let $W=$ no. of packets where $Y>18] \quad \mathrm{P}(W=5)=(" 0.7358 . . . ")^{5}$		M1
	$=0.21573 \ldots \quad$ awrt $\underline{\underline{0.216}}$		A1
(c)	$\mathrm{H}_{0}: p=0.05 \quad \mathrm{H}_{1}: p>0.05$		B1 (1)
(d)	[$V=$ no. of seeds that do not germinate $\quad V \sim \mathrm{~B}(100,0.05)$ app	ates to] $\quad V \sim \operatorname{Po}(5)$	M1A1
	CR for 1-tail in (c)	CR for 2-tail in (c)	
	$\begin{aligned} \mathrm{P}(V \geqslant 8) & =1-\mathrm{P}(V \leqslant 7) \\ = & 1-0.8666\end{aligned}$	$\mathrm{P}(V \geqslant 10)=0.0318$	M1
		$\mathrm{P}(V \geqslant 11)=0.0137$	
	$=0.1334$ $\mathrm{CR} V \geqslant 10$ oe	CR $V \geqslant 11$ oe	A1
	Accept H_{0} or not significant or 8 does not lie in the critical region		dM1
	Data consistent with Spany's claim or Insufficient evidence for Jem's belief or insufficient evidence that percentage of seeds not germinating is more than $\mathbf{5 \%}$ (o.e.)		A1cso
			Total 14

Notes

(a) B1: writing or using $\mathrm{B}(20,0.05)$ [Allow $Y \sim \mathrm{~B}(20,0.95)$ if Y is clearly defined]. Implied by 1 correct prob.
(i) M1: for $\mathrm{P}(X \leqslant 4)-\mathrm{P}(X \leqslant 2)$ and one correct prob. or $\mathrm{P}(X=3)+\mathrm{P}(X=4)$ and 1 correct prob.
(ii) M1: for $\mathrm{P}(X \leqslant 1)$ or $[20] \times(0.95)^{19}(0.05)+(0.95)^{20}$ - condone missing 20
(b)

M1: for $(\text { their(a)(ii) })^{5}$
(c)

B1: both hypotheses correct with p or π
$1^{\text {st }}$ M1: for realising a Poisson approximation is appropriate.
$\mathrm{NB} \operatorname{Po}(95)$ is M0A0
$\mathbf{1}^{\text {st }} \mathbf{A 1}$: writing or using $V \sim \operatorname{Po}(5)$ i.e correct mean for the Poisson.
$\mathbf{2}^{\text {nd }} \mathbf{M} 1$: for writing or using $1-\mathrm{P}(V \leqslant 7)$ or $\mathrm{P}(V \leqslant 7)=0.8666$
or writing $\mathrm{P}(V \geqslant 10)=0.0318$ or $\mathrm{P}(V \geqslant 9)=0.0681$ or $\mathrm{P}(V \geqslant 11)=0.0137$ leading to a CR. Implied by correct CR or probability $=$ awrt 0.133
$\mathbf{2}^{\text {nd }} \mathbf{A 1}$: for awrt 0.133 or $V \geqslant 10$ oe (e.g. $V>9$) or $V \geqslant 11$ oe allow any letter but CR must match part(c)
$\mathbf{3}^{\text {rd }} \mathbf{d M 1}$: dep on $2^{\text {nd }}$ M1. ft their CR or probability. A correct statement based on comparing 8 with their CR
or their prob with 0.05 or 0.025 [condone $0.866<0.95$]- contradicting non-contextual comments M0
$\mathbf{3}^{\text {rd }} \mathbf{A 1}$ cso: all previous marks must be awarded. A correct statement in context. Need Bold words.
NB award M1A1 for a correct contextual statement on its own.
If there are no hypotheses or they are the wrong way around, then $3^{\text {rd }} \mathrm{M} 03^{\text {rd }} \mathrm{A} 0$
Normal approximation: Award marks in pairs with 2,4 or 6 marks available
Sight of N(5 or 95, $\sqrt{4.75}^{2}$) M1A1; probability awrt $0.125 / 6$ M1A1; Correct contextual concl' dM1A1

Question Number	Scheme	Marks
3. (a)		M1
		A1 (2)
(b)	$\frac{\mathrm{d}\left(\frac{3}{50}\left(4 y^{2}-y^{3}\right)\right)}{\mathrm{d} y}=\frac{3}{50}\left(8 y-3 y^{2}\right)$	M1
	$\frac{3}{50}\left(8 y-3 y^{2}\right)=0 \quad ; \quad y=\frac{8}{3} \text { oe }$	
(c)	$\mathrm{E}\left(Y^{2}\right)=\int_{1}^{2}\left(\frac{6}{25} y^{3}-\frac{6}{25} y^{2}\right) \mathrm{d} y+\int_{2}^{4}\left(\frac{12}{50} y^{4}-\frac{3}{50} y^{5}\right) \mathrm{d} y$	M1
	$=\left[\frac{6}{100} y^{4}-\frac{6}{75} y^{3}\right]_{1}^{2}+\left[\frac{12}{250} y^{5}-\frac{3}{300} y^{y^{6}}\right]_{2}^{4}$	A1
	$=\left[\left(\frac{8}{25}\right)-\left(-\frac{1}{50}\right)\right]+\left[\left(\frac{1024}{125}\right)-\left(\frac{112}{125}\right)\right] ; \quad=\quad \underline{\frac{1909}{250}} \quad \text { or } \quad \underline{7.636} \text { or } \underline{7.64}$	dM1; A1
	1909	(4)
(d)	$\operatorname{Var}(Y)=" \frac{1909}{250} "-2.696^{2}$	M1
	$=0.367584$ awrt $\underline{\mathbf{0 . 3 6 8}}$	A1 (2)
(e)	$\frac{1}{2}(y-1) \times \frac{6}{25}(y-1)=0.1 \quad \text { or } \quad \int_{1}^{x} \frac{6}{25}(y-1) \mathrm{d} y=0.1$	M1
	$\frac{1}{2}(y-1) \times \frac{6}{25}(y-1)=0.1 \quad \text { or } \frac{6}{25}\left[\left(\frac{x^{2}}{2}-x\right)+\frac{1}{2}\right]=0.1 \quad \text { or } \quad \frac{6}{50}(x-1)^{2}=0.1$	A1
	$(y-1)^{2}=\frac{5}{6}$ or $y=1 \pm \sqrt{\frac{5}{6}} ; \quad y=1.9128 \ldots \quad$ awrt $\underline{\mathbf{1 . 9 1}}$	dM1; A1
		$\begin{array}{r} (4) \\ \text { Total } 15 \end{array}$
	Notes	
(a)	M1: the two parts must be the right shape and not joined. Ignore labels and condone if A1: for $6 / 25,12 / 25,1,2$ and 4 and must not go beyond 4 or <1 [Can allow "freehand"	ow x-axis ne]
(b)	$\mathbf{1}^{\text {st }} \mathbf{M 1}$: for attempting to differentiate $y^{n} \rightarrow y^{n-1}$ for $n=2$ or 3 $\mathbf{2}^{\text {nd }} \mathbf{M}$ 1: for equating their differential $(\neq \mathrm{f}(y))$ to zero and an attempt at solving so mus A1: for $\frac{8}{3}$ oe and allow awrt 2.67 If $y=0$ is seen it must be rejected.	
(c)	$\mathbf{1}^{\text {st }} \mathbf{M 1}$: for using $\int y^{2} \mathrm{f}(y)$ for both parts, and an attempt at integration (some $y^{n} \rightarrow y^{n+1}$) Ignore limits. $\mathbf{1}^{\text {st }} \mathbf{A 1}$: for correct integration for both parts. Ignore limits. $\mathbf{2}^{\text {nd }} \mathbf{d M 1}$: dep on $1^{\text {st }}$ M1 for adding the 2 parts together and substituting the correct limits in to each part. $\mathbf{2}^{\text {nd }} \mathbf{A 1}$: allow 7.64 or 7.636 You will need to check that they have used algebraic integration.	
(d)	M1: for "their part(c)"-2.696 ${ }^{2}$ A1: for awrt 0.368	
(e)	$\mathbf{1}^{\text {st }}$ M1: allow $\frac{1}{2} t \times \frac{6}{25}(t-1)=0.1$ or $\int_{1}^{x} \frac{6}{25}(y-1)$ d $y=0.1$ and some integration and sub' of 1 and x $\mathbf{1}^{\text {st }} \mathbf{A 1}$: for a correct equation in any form $\mathbf{2}^{\text {nd }} \mathbf{d M 1}$: dependent on $1^{\text {st }} \mathrm{M} 1$ for a correct method for solving their equation. Implied by correct answer. $\mathbf{2}^{\text {nd }} \mathbf{A 1}$: for awrt 1.91 (second solution should be rejected)	

Question Number	Scheme	Marks
6. $\begin{array}{rr}\text { (i) } \\ & \\ & \\ & \\ & \\ & \\ & \\ \text { (ii) }\end{array}$	$z=1.25$	B1
	$\underline{187.5-\mu}=1.25$	$\begin{aligned} & \text { M1 M1 } \\ & \text { A1 } \end{aligned}$
	$187.5-\mu=1.25 \sigma$	
	$\mu=225 p$	M1
	$\sigma=\sqrt{225 p(1-p)}$	M1
	$(187.5-225 p)^{2}=(1.25)^{2} \times 225 p(1-p)$ or $(150-180 p)^{2}=225 p(1-p) \quad$ (o.e.)	M1
	e.g. $900(5-6 p)^{2}=225\left(p-p^{2}\right) \Rightarrow 4\left(25-60 p+36 p^{2}\right)=p-p^{2}$ Leading to	A1*
	$[(29 p-25)(5 p-4)=0 \Rightarrow] \quad p=0.8$ or $p=\frac{25}{29}$ (accept: $\left.0.862(0689 \ldots)\right)$	M1
	[$\boldsymbol{p}=$] $\underline{\mathbf{0 . 8}}$ because 0.862 gives a mean greater than 188 (oe)	A1 (10)
		Total 10
	Notes	
(i)	B1: for 1.25 or better (calculator gives: 1.25027...)	
	M1: for attempting to use a continuity correction i.e. for sight of 188 ± 0.5	
	$\mathbf{2}^{\text {nd }} \mathbf{M 1}$: for standardising using μ and σ or $n p$ and $\sqrt{n p(1-p)}$ (Condone letter n or any integer >0)	
	$\mathbf{1}^{\text {st }} \mathbf{A 1}$: for a correct equation with compatible signs, allow $1.250 \ldots$ If using a value for n it must be 225 $3^{\text {rd }}$ M1: for $\mu=225 p$ seen at any stage in the working.	
	$4^{\text {th }}$ M1: for $\sigma=\sqrt{225 p(1-p)}$ seen at any stage in the working. Must be for σ not $\sigma^{2}=225 p(1-p)$	
	$\mathbf{2}^{\text {nd }} \mathbf{A 1 *}$: dep on all previous Ms and use of 1.25 (with correct sign) for at least 1 correct intermediate step from a correct quadratic equation e.g one of those in scheme for $5^{\text {th }} \mathrm{M} 1$	
(ii)	M1: for solving the quadratic correctly-leading to $p=\ldots$ or implied by 0.8 or awrt 0.862 A1: for 0.8 and a correct reason to eliminate 0.862	

