## Mark Scheme (Results)

Summer 2021

Pearson Edexcel International Advanced Level In Mechanics M2 (WME02/01)

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

## Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2021
Publications Code WME02_01_2021_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

## General Marking Guidance

-All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
-There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
-All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.


## Summary of changes from Provisional Mark Scheme

A few minor changes were made to the Mark Scheme before marking on the marking service began.

| Question <br> Number | Summary of change |
| :--- | :--- |
| Q3b | An alternative method added in the left-hand column and an example <br> solution added in the notes. |
| Q4 | A note added at the end to take account of two common errors that were <br> seen. |
| Q6b | Some notes added to clarify what was / was not accepted. |
| Q7b | An alternative method added. |

## PEARSON EDEXCEL IAL MATHEMATICS

## General Instructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
-     * The answer is printed on the paper or ag- answer given
- $\square$ or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

## General Principles for Mechanics Marking

(But note that specific mark schemes may sometimes override these general principles)

- Rules for M marks: correct no. of terms; dimensionally correct; all terms that need resolving (i.e. multiplied by $\cos$ or $\sin$ ) are resolved.
- Omission or extra g in a resolution is an accuracy error not method error.
- Omission of mass from a resolution is a method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of $g=9.8$ should be given to 2 or 3 SF .
- Use of $\mathrm{g}=9.81$ should be penalised once per (complete) question.
N.B. Over-accuracy or under-accuracy of correct answers should only be penalised once per complete question. However, premature approximation should be penalised every time it occurs.
- Marks must be entered in the same order as they appear on the mark scheme.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads - if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft
- Mechanics Abbreviations

M(A) Taking moments about A.
N2L Newton's Second Law (Equation of Motion)
NEL Newton's Experimental Law (Newton's Law of Impact)
HL Hooke's Law
SHM Simple harmonic motion
PCLM Principle of conservation of linear momentum
RHS, LHS Right hand side, left hand side.

| Q | Solution | Mark | Notes |
| :--- | :--- | :--- | :--- |
| 1 | Driving force $(F)=\frac{3500}{V}$ | B1 | Use of $P=F v$ |
|  | Equation of motion: <br> $F-20 V+480 g \sin \theta=0$ | M1 | Need all terms. Dimensionally <br> correct. Condone sign errors and <br> sin/cos confusion |
|  | $\frac{3500}{V}-20 V+40 g=0$ | A1 | Correct unsimplified equation in <br> $V$. |
|  | $20 V^{2}-392 V-3500=0$ | M1 | Form a 3 term quadratic equation <br> $(=0)$ in $V$ |
|  | $V=26.3 \quad(26)$ | 3 sf or 2 sf <br> Not $\frac{49+22 \sqrt{14}}{5}$ <br> (follows use of <br> A1 |  |
|  |  | $\mathbf{( 5 )}$ | $9.8)$ |
|  |  | [5] |  |


| 2a |  |  | Allow column vectors throughout |
| :---: | :---: | :---: | :---: |
|  | Use $\mathbf{a}=\frac{\mathrm{d} \mathbf{v}}{\mathrm{d} t}$ | M1 | Differentiate - at least 3 powers going down by 1 |
|  | $\mathbf{a}=\left(10 t-3 t^{2}\right) \mathbf{i}+\left(6 t^{2}-8\right) \mathbf{j}$ | A1 |  |
|  | $\mathbf{F}=1.5 \times((20-12) \mathbf{i}+(24-8) \mathbf{j})$ | DM1 | Substitute $t=2$ and use $\mathbf{F}=m \mathbf{a}$ Dependent on preceding M1 |
|  | $=12 \mathbf{i}+24 \mathbf{j}$ | A1 | Ignore magnitude of $\mathbf{F}$ if found |
|  |  | (4) |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
| 2b | $5 t^{2}-t^{3}=0 \quad \Rightarrow t=5$ | B1 | (Not moving when $t=0$ so no need to mention $t=0$ ) |
|  | Use of $\mathbf{r}=\int \mathbf{v d} t$ | M1 | Integrate to find $\mathbf{r}$ - at least 3 powers going up by 1 . |
|  | $\mathbf{r}=\left(\frac{5}{3} t^{3}-\frac{1}{4} t^{4}\right) \mathbf{i}+\left(\frac{1}{2} t^{4}-4 t^{2}\right) \mathbf{j}$ | A1 | Condone if no constant of integration seen (since $t=0, \mathbf{r}=\mathbf{0})$ |
|  | $\mathbf{r}=\left(\frac{625}{12}\right) \mathbf{i}+\left(\frac{425}{2}\right) \mathbf{j}$ | A1 | Final answer $52 \mathbf{i}+210 \mathbf{j}$ or better $(52.083 \dot{\mathbf{i}}+212.5 \mathbf{j})$ |
|  |  | (4) |  |
|  |  | [8] |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |


| 3a |  | square | triangle | circle | $T$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | mass | 36 | 8 | $\pi$ | $28-\pi$ |  |  |
|  | $\begin{aligned} & \mathrm{c} \\ & \text { from } \\ & A D \end{aligned}$ | $3 a$ | $\frac{7}{3} a$ | $4 a$ | $d$ |  |  |
|  | Mass ratio |  |  |  |  | B1 |  |
|  | Distances from $A D$ or a parallel axis |  |  |  |  | B1 |  |
|  | $\mathrm{M}(A D$ or parallel axis): |  |  |  |  | M1 | Moments equation. Need all terms and dimensionally correct. Condone sign errors. |
|  | $36 \times 3 a-8 \times \frac{7}{3} a-\pi \times 4 a=(28-\pi) d$ |  |  |  |  | A1 | Correct unsimplified equation for their parallel axis |
|  | $\left(108 a-\frac{56}{3} a-4 \pi a=(28-\pi) d\right)$ |  |  |  |  |  |  |
|  | $d=\frac{324-56-12 \pi}{3(28-\pi)} a=\frac{4(67-3 \pi)}{3(28-\pi)} a *$ |  |  |  |  | A1* | Obtain given answer from correct working |
|  |  |  |  |  |  |  | Distance from $B C$ is $\frac{(236-6 \pi) a}{3(28-\pi)}$ <br> Allow $4 / 5$ if seen. |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | (5) |  |
| 3b | $\mathrm{M}(A): W \times \frac{4(67-3 \pi)}{3(28-\pi)} a=k W \times 6 a$ <br> 0r resolve vertically and use $\mathrm{M}(G)$, where $G$ is the centre of mass, $\begin{aligned} & T_{A}+k W=W \\ & T_{A}\left(\frac{4(67-3 \pi)}{3(28-\pi)} a\right)=k W\left(6 a-\frac{4(67-3 \pi)}{3(28-\pi)} a\right) \end{aligned}$ |  |  |  |  | M1 | Complete method to form an equation in $k$ and $W$ only Dimensionally correct but condone use of incorrect distsance(s) |
|  |  |  |  |  |  | A1 | Correct unsimplified equation $\left(\mathrm{NB} \frac{4(67-3 \pi)}{3(28-\pi)} a=3.088 a\right)$ |
|  | $k=0.51$ |  |  |  |  | A1 | Q asks for 2dp |
|  |  |  |  |  |  | (3) |  |
|  |  |  |  |  |  | [8] |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |


| 4 |  |  | Resolving parallel and perpendicular to the original direction of motion |
| :---: | :---: | :---: | :---: |
|  | Use of $J=m(v-u)$ | M1 | Use of $J=m(v-u)$ parallel or perpendicular to original direction |
|  | $\begin{aligned} & J \cos 30^{\circ}=2.4 \cos \theta \\ & \text { or } \quad J \cos 60^{\circ}=2.4 \sin \theta-1.5 \end{aligned}$ | A1 | One correct unsimplified equation |
|  | Use of $J=m(v-u)$ | M1 | Use of $J=m(v-u)$ to form second equation |
|  |  | A1 | $2^{\text {nd }}$ correct unsimplified equation |
|  | The first 4 marks are available for a correct equation in vector form. |  | $\binom{-2.4 \cos \theta}{2.4 \sin \theta}=\binom{-J \cos 30^{\circ}}{J \cos 60^{\circ}+1.5}$ |
|  | $\begin{aligned} & 2.4^{2}=\frac{3 J^{2}}{4}+\frac{J^{2}}{4}+1.5 J+1.5^{2} \\ & \left(J^{2}+1.5 J-3.51=0\right) \end{aligned}$ | DM | Form an equation in $J$ only Dependent on previous two M1 marks |
|  | $J=1.3$ | A1 | 1.3 or better (1.268....) |
|  |  | (6) |  |
|  | NB Use of initial velocity parallel to final velocity or final velocity parallel to impulse is a method error, not a misread |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  | See over for alternatives |


| 4 |  |  | Resolving parallel and <br> perpendicular to the direction <br> of the impulse. |
| :--- | :--- | :--- | :--- |
|  | Use of $J=m(v-u)$ |  |  |


| 5 an |  |  |  |
| :--- | :--- | :--- | :--- |


| 5b <br> alt | Moments about $B$ | M1 | Dimensionally correct. Need <br> all terms. Condone sign <br> errors and sin/cos confusion |
| :--- | :--- | :--- | :--- |
|  | $M g a \cos 20^{\circ}+5 a H \cos 70^{\circ}=5 a V \cos 20^{\circ}$ | A1 | Correct unsimplified equation |
|  | Moments about $C$ | M1 | Dimensionally correct. <br> Condone sign errors and <br> sin/cos confusion |
|  | $5 a H=4 a M g \cos 20^{\circ}$ | A1 | Correct unsimplified equation |
|  | Resultant $\lambda=\sqrt{(0.4736 . .)^{2}+(0.7517 . .)^{2}}$ | M1 | Use Pythagoras |
|  | $=0.89$ | A1 | The Q asks for 2 sf |
|  | M1A1M1A1 for 2 independent equations M1A1 to solve for $\lambda$ |  |  |
|  |  |  |  |


| 6a | GPE lost | M1 | Need all terms. Condone sign errors and $\sin / \cos$ confusion |
| :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & =3 g \times 2-2 g \times 2 \sin \theta \\ & \left(=6 g-4 g \times \frac{5}{13}\right) \end{aligned}$ | A1 | Correct unsimplified. Accept $\pm$ |
|  | $=\frac{58}{13} g=43.7(44)(\mathrm{J})$ | A1 | Must be positive. Exact multiple of $g$ or 3 sf or 2 sf |
|  |  | (3) |  |
| 6b | Normal reaction $=2 g \cos \theta\left(=\frac{24}{13} g\right)$ | B1 | Condone $\frac{1176}{65}$ |
|  | $F_{\text {max }}=\frac{3}{8} \times R\left(=\frac{9 g}{13}\right)$ | M1 | Use $F=\mu R$ with their $R$ $\left(\frac{441}{65}\right)$ |
|  | Work done $=2 \times F_{\text {max }}$ | M1 | Their $F_{\text {max }}$ |
|  | $\left(=\frac{18 g}{13}\right)=13.6(\mathrm{~J}) 14(\mathrm{~J})$ | A1 | Exact multiple of $g$ or 3 sf or 2 sf . Not $\frac{882}{65}$ |
|  |  | (4) |  |
| 6c | Total KE gained = GPE lost - total WD against friction | M1 | Must be using work-energy. <br> Dimensionally correct. <br> Required terms and no extras. <br> Condone sign errors. |
|  | $\begin{aligned} & \frac{1}{2}(2+3) v^{2}=(\text { their }(a))-(\text { their }(b)) \\ & \left(\frac{5}{2} v^{2}=\frac{58}{13} g-\frac{18}{13} g=\frac{40}{13} g\right) \end{aligned}$ | A2ft | Follow their (a) and (b) -1 each error |
|  | $v=\sqrt{\frac{16}{13} g}=3.47\left(\mathrm{~ms}^{-1}\right)$ or $3.5\left(\mathrm{~ms}^{-1}\right)$ | A1 | 3 sf or 2 sf (need to substitute for $g$ ) |
|  |  | (4) |  |
| 6 d | $\begin{aligned} & \text { KE lost } \\ & \text { = GPE gained + WD against friction } \end{aligned}$ | M1 | Must be using work-energy. Dimensionally correct. Required terms and no extras. Condone sign errors. |
|  | $\begin{aligned} & \frac{1}{2} \times 2 \times \frac{16}{13} g=2 g \times d \sin \theta+\frac{3}{8} \times 2 g \times \frac{12}{13} d \\ & \frac{1}{2} \times 2 \times v^{2}=2 g \times d \sin \theta+d \times F_{\max } \\ & \frac{16}{13} g=\left(\frac{10}{13} g+\frac{9}{13} g\right) d \end{aligned}$ | A2ft | Follow their (c) and their $F_{\text {max }}$ -1 each error |
|  | $d=\frac{16}{19}$ | A1 | $g$ cancels. 0.84 or better $(0.8421 \ldots .)$ |
|  |  | [15] |  |
|  |  |  |  |
|  |  |  |  |


| 7a | $-12=12-g t$ | M1 | Use suvat to find time taken |
| :---: | :---: | :---: | :---: |
|  | $t=\frac{24}{g}(=2.45)$ | A1 |  |
|  | $A B=6 t$ | M1 | Horizontal distance |
|  | $=14.7(15)(\mathrm{m})$ | A1 | 3 sf or 2 sf <br> Not $\frac{720}{49}$ (follows use of 9.8) <br> Not $\frac{144}{g}$ (do not accept $g$ in the denominator) |
|  |  | (4) |  |
|  |  |  |  |
| 7b | Vertical component of velocity $=( \pm) 8$ | B1 |  |
|  | $v^{2}=u^{2}+2 a s$ | M1 | Complete method using suvat to find $h$ |
|  | $\Rightarrow 8^{2}=12^{2}-2 g h$ | A1 | Correct unsimplified equation |
|  | $h=4.08$ (4.1) | A1 | 3 sf or 2 sf Not $\frac{200}{49}$ (follows use of 9.8) Not $\frac{40}{g}$ (do not accept $g$ in the denominator) |
|  |  | (4) |  |
| $\begin{array}{\|l} \hline 7 \mathrm{~b} \\ \text { alt } \end{array}$ | $\mathbf{v}=\binom{6}{12}-\binom{0}{g} t \Rightarrow 12-g t=( \pm) 8$ | B1 | Correct expression for critical value(s) of $t$ |
|  | $h=12 t-\frac{1}{2} g t^{2}$ | M1 | Complete method using suvat to find $h$ |
|  | $=\frac{48}{g}-\frac{8}{g} \quad \text { or } \quad=\frac{240}{g}-\frac{200}{g}$ | A1 | Correct unsimplified equation |
|  | $h=4.08 \quad$ (4.1) | A1 | 3 sf or 2 sf |
|  |  | (4) |  |
| $\begin{array}{\|l\|} \hline 7 \mathrm{~b} \\ \text { alt } \end{array}$ | Conservation of energy | M1 | Need all terms and dimensionally correct |
|  | $m g h+\frac{1}{2} m \times 10^{2}=\frac{1}{2} m\left(12^{2}+6^{2}\right)$ | $\begin{aligned} & \mathrm{A}(\mathrm{~B}) 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$ | Unsimplified equation with at most one error Correct unsimplified equation |
|  | $h=4.08 \quad(4.1)$ | A1 | 3 sf or 2 sf |
|  |  | (4) |  |
|  |  |  |  |
|  |  |  | See over for (c) |


| 7c | $\binom{6}{-12} \cdot\binom{6}{v}=0$ | M1 | Complete method to find vertical component at $C$. |
| :---: | :---: | :---: | :---: |
|  | $\Rightarrow v=3$ | A1 |  |
|  | $\mathbf{v}=6 \mathbf{i}+3 \mathbf{j}\left(\mathrm{~ms}^{-1}\right)$ | A1 | Must be a vector in terms of $\mathbf{i}$ and $\mathbf{j}$ |
|  If see $\binom{6}{12} \cdot\binom{6}{v}=0$ leading to $\mathbf{v}=6 \mathbf{i}-3 \mathbf{j}$ mark as a misread: M1A0A0 | If see $\binom{6}{12} \cdot\binom{6}{v}=0$ leading to $\mathbf{v}=6 \mathbf{i}-3 \mathbf{j}$ mark as a misread: M1A0A0 |  |  |
|  |  | (3) |  |
|  |  | [11] |  |
|  | Accept working in column vectors throughout apart from the final A1 |  |  |
|  |  |  |  |


| 8a |  |  |  |
| :---: | :---: | :---: | :---: |
|  | Use CLM: $4 m u=2 m v+m w$ | M1 | Need all terms. Condone sign errors. Dimensionally correct but allow with $m$ cancelled |
|  | $(4 u=2 v+w)$ | A1 | Correct unsimplified. Signs correct for their $v, w$ |
|  | Use Impact law | M1 | Used the right way round. Condone sign errors. |
|  | $w-v=2 u e$ | A1 | Correct unsimplified. Signs consistent with CLM equation. |
|  | $\Rightarrow 4 u=2(w-2 u e)+w$ | DM1 | Solve for $v$ or $w$. <br> Dependent on previous 2 M marks |
|  | $3 w=4 u+4 u e, \quad w=\frac{4}{3} u(1+e) *$ | A1* | Obtain given result from correct working |
|  | $v=\frac{2}{3} u(2-e)$ | A1 | Or equivalent. Must be positive |
|  |  | (7) |  |
| 8b | $2>e$ so $A$ moving towards centre | B1 | Correct statement about direction of travel for $A$ |
|  | $\begin{aligned} & m w-3 m u=m x+3 m y \\ & y-x=e\left(u+\frac{4 u}{3}+\frac{4 e u}{3}\right) \end{aligned}$ | M1 | Use CLM and impact law correctly to form simultaneous equations in $x$ and $y$. |
|  | $\begin{aligned} & \frac{4}{3} e u-\frac{5}{3} u=x+3 y \\ & 3 y-3 x=e(7 u+4 u e) \end{aligned}$ | A1 | Both equations correct unsimplified in $u, e, x$ and $y$ |
|  | $4 x=\frac{4}{3} u e-\frac{5}{3} u-7 u e-4 u e^{2}$ | DM1 | Solve for $x$ |
|  | $x=-\frac{5}{12} u-\frac{17}{12} u e-u e^{2}$ | A1 | Allow for a correct constant multiple of $x$ |
|  | $e>0, u>0$ so $B$ moving towards centre from opposite direction, hence they collide.* | A1* | Obtain given answer from correct working |
|  |  | (6) |  |
|  | Alternative for last 3 marks; |  |  |
|  | $C$ moving towards centre implies $B$ moving towards centre, so collision. <br> $C$ moving away from centre, so $y>0$, $x=w-3 u-3 y=-\frac{8 u}{3}+\frac{4 e u}{3}-3 y$ | DM1 | Consider direction of $C$ |


|  | $=-\frac{u}{3}(8-4 e)-3 y$ | A 1 |  |
| :--- | :--- | :--- | :--- |
|  | $<0$ because $e \leq 1$ and $y>0$ hence $B$ <br> moving towards centre from opposite <br> direction, and they will collide.* | $\mathrm{A} 1^{*}$ | Obtain given answer from <br> correct working |
|  |  |  |  |
|  |  | $[13]$ |  |
|  |  |  |  |

