Pearson Edexcel

Mark Scheme (Provisional)

Summer 2021

Pearson Edexcel International Advanced Level In Further Pure Mathematics F1 (WFM01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2021
Question Paper Log Number P66060A
Publications Code WFM01_01_2106_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it^{\prime}, unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- o.e. - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \quad or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao), unless shown, for example, as A1ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking
 (But note that specific mark schemes may sometimes override these general principles)

Method mark for solving 3 term quadratic:

1. Factorisation

$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$, leading to $x=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $x=\ldots$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, q \neq 0$, leading to $x=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^{n} \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. ($x^{n} \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

Method mark for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is not quoted, the method mark can be gained by implication from correct working with values but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Qn No	Scheme	Notes	Marks
2. (a)	$\frac{z_{2} z_{3}}{z_{1}}=\frac{(p-\mathrm{i})(p+\mathrm{i})(2+\mathrm{i})}{(2-\mathrm{i})(2+\mathrm{i})}$	Multiply top and bottom by complex conjugate of their denominator. (The two M's may be scored if the given numbers are wrongly placed.)	M1
	$=\frac{\left(p^{2}+1\right)(2+\mathrm{i})}{5}$	Simplifies numerator with evidence that $\mathrm{i}^{2}=-1$ and denominator real. Accept any equivalent form in the numerator as long as there are not i^{2} terms if expanded.	M1
	$=\frac{2\left(p^{2}+1\right)}{5}+\frac{\left(p^{2}+1\right)}{5} \mathrm{i}$	Correct real +imaginary form with i factored out. Accept as single fraction with numerator in correct form. Accept ' $a=$ ' and ' $b=$ '.	A1
			(3)
ALT	$\left.\begin{array}{l} \frac{z_{2} z_{3}}{z_{1}}=\frac{(p-\mathrm{i})(p+\mathrm{i})}{(2-\mathrm{i})}=a+b \mathrm{i} \\ p^{2}+1=(a+b \mathrm{i})(2-\mathrm{i}) \\ \left.\begin{array}{l} 2 a+b=p^{2}+1 \\ 2 b-a \end{array}\right\} \end{array}\right\}$	Cross multiplies by $2-\mathrm{i}$ (or their denominator), expands and equates real and imaginary parts. (The two M's may be scored if the given numbers are wrongly placed.)	M1
	$\left.\begin{array}{l} 2 a+b=p^{2}+1 \\ 2 b-a=0 \end{array}\right\} \Rightarrow a=\ldots, b=\ldots$	Attempt to solve their equations.	M1
	$a+b \mathrm{i}=\frac{2\left(p^{2}+1\right)}{5}+\frac{\left(p^{2}+1\right)}{5} \mathrm{i}$	Correct real +imaginary form with i factored out. Accept as single fraction with numerator in correct form. Accept ' $a=$ ' and ' $b=$ '.	A1
			(3)
(b)	$\left\|\frac{z_{2} z_{3}}{z_{1}}\right\|^{2}=\frac{4\left(p^{2}+1\right)^{2}}{25}+\frac{\left(p^{2}+1\right)^{2}}{25}$	Correct attempt at the modulus or modulus squared. Accept with their answers to part (a). Any erroneous i or i^{2} is M0.	M1
	$\frac{4\left(p^{2}+1\right)^{2}}{25}+\frac{\left(p^{2}+1\right)^{2}}{25}=(2 \sqrt{5})^{2}$	Their $\left\|\frac{z_{2} z_{3}}{z_{1}}\right\|^{2}=(2 \sqrt{5})^{2}$	dM1
	$\left(p^{2}+1\right)^{2}=100 \Rightarrow p= \pm 3$	Attempt to solve and achieves $p=\ldots$ (may be scored from use of $\|. .\|^{2}=2 \sqrt{5}$) $p= \pm 3$	M1 A1
			(4)
ALT 1	$\left\|\frac{z_{2} z_{3}}{z_{1}}\right\|=2 \sqrt{5} \Rightarrow\left\|z_{2} z_{3}\right\|=\sqrt{4+1} \times 2 \sqrt{5}$	Cross multiplies and attempts $\left\|z_{1}\right\|$	M1
	$\Rightarrow\left\|z_{2}\right\|^{2}=\sqrt{4+1} \times 2 \sqrt{5} \Rightarrow p^{2}+1=\ldots$	Attempts $\left\|z_{2} z_{3}\right\|$ either directly or using $\left\|z_{2} z_{2}^{*}\right\|=\left\|z_{2}\right\|^{2}$ to get an equation in p.	dM1
	$\left(p^{2}+1\right)=10 \Rightarrow p= \pm 3$	Attempt to solve and achieves $p=\ldots$ $p= \pm 3$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
			(4)
			Total 7

Question Number	Scheme	Notes	Marks
	$\mathrm{f}(x)=\left(9 x^{2}+d\right)\left(x^{2}-8 x+(10 d+1)\right)$		
5(a)	$9 x^{2}+d=0 \Rightarrow x= \pm \sqrt{-\frac{d}{9}} \text { or } \pm \frac{\mathrm{i} \sqrt{d}}{3}$	or exact equivalents	B1
	$\begin{aligned} & \text { or } x=\frac{8 \pm \sqrt{64-4(10 d+1)}}{2} \text { or } \\ & \quad(x-4)^{2}-16+10 d+1=0 \Rightarrow x=\ldots \end{aligned}$	Solve $x^{2}-8 x+(10 d+1)=0$ by formula or completing the square. Must have complete constant term.	M1
	$x=4+\sqrt{15-10 d}$ and $x=4-\sqrt{15-10 d}$	oe with discriminant simplified. Mark final answer, do not isw.	A1
			(3)
(b)	$x= \pm \frac{2 \mathrm{i}}{3}$	Correct roots for their answer for the $9 x^{2}+d$	B1ft
	$x=4 \pm 5 \mathrm{i}$	Correct roots for their 3TQ	B1ft
	SC Award B1ftB0 if only one of each pair is given.	given.	
			(2)
(c)		Two roots on imaginary axis the same distance from O. Follow through their imaginary roots from (b). B0 if real roots found. Their two complex roots with real and imaginary parts, one the conjugate of the other, so reflected in the real axis. Must be correct relative scale compared with the imaginary roots if the first B1 in (c) has been awarded (ie clearly further from O if correct, or f.t. their answers). But if first B 0 has been given, ignore scales. Accept points or vectors. Complex numbers must be labelled in some way e.g. via scales or coordinates or vectors.	B1ft B1ft
			(2)
			Total 7

Question Number	Scheme	Notes	Marks
6(a)	$\begin{aligned} & y=\sqrt{8} x^{\frac{1}{2}} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{2} \sqrt{8} x^{-\frac{1}{2}}=\sqrt{2} x^{-\frac{1}{2}} \\ & y^{2}=8 x \Rightarrow 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=8 \\ & \text { or } \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \frac{\mathrm{~d} t}{\mathrm{~d} x}=4 \cdot \frac{1}{4 t} \end{aligned}$	Attempts a derivative expression, such as $\frac{\mathrm{d} y}{\mathrm{~d} x}=k x^{-\frac{1}{2}}$ or $k y \frac{\mathrm{~d} y}{\mathrm{~d} x}=c$ or their $\frac{\mathrm{d} y}{\mathrm{~d} t} \times\left(\frac{1}{\text { their } \frac{\mathrm{d} x}{\mathrm{~d} t}}\right)$	M1
	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} \sqrt{8} x^{-\frac{1}{2}}\left(=\sqrt{2} x^{-\frac{1}{2}}\right) \text { or } 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=8 \text { or } \\ & \frac{\mathrm{d} y}{\mathrm{~d} x}=4 \cdot \frac{1}{4 t}\left(=\frac{1}{t}\right) \end{aligned}$	Correct differentiation (need not have substituted for t etc)	A1
	At P, gradient of normal is $m_{N}=-p$	Correct gradient for the normal.	A1
	$y-4 p=-p\left(x-2 p^{2}\right)$	$\begin{aligned} & y-4 p=\left(\text { their } m_{N}\right) \times\left(x-2 p^{2}\right) \text { or } \\ & y=\left(\text { their } m_{N}\right) x+c \text { using } \\ & x=2 p^{2}, y=4 p \text { in an attempt to find } c . \end{aligned}$ Their gradient must be a function of p for marks to be awarded. Must use a changed gradient, not tangent gradient.	M1
	$y+p x=2 p^{3}+4 p^{*}$	cso	A1
			(5)
(b)	$y+q x=2 q^{3}+4 q$	oe	B1
			(1)
(c)	Note: part (c) appears as MMAAA on ePEN but is being marked MAMAA.		
	$\begin{aligned} & y+p x=2 p^{3}+4 p \\ & y+q x=2 q^{3}+4 q \\ & p x-q x=2 p^{3}+4 p-2 q^{3}-4 q \end{aligned}$	Attempt to solve simultaneous equations. A correct equation in only one variable	M1 A1
	$(p-q) x=2\left((p-q)\left(p^{2}+p q+q^{2}\right)+2(p-q)\right)$	Attempts to simplify the expression to required form. E.g. factorise difference of two cubes, $p^{3}-q^{3}=(p-q)\left(p^{2}+p q+q^{2}\right)$ or equivalent work to enable $p-q$ to cancel.	M1
	$x=2\left(p^{2}+p q+q^{2}+2\right) *$	cso for reaching the correct x coordinate.	A1
	$\begin{aligned} & y+2 p^{3}+2 p^{2} q+2 p q^{2}+4 p=2 p^{3}+4 p \\ & y=-2 p q(p+q)^{*} \end{aligned}$	cso for reaching both coordinates correctly.	A1
			(5)

Question Number	Scheme	Notes	Marks
	$\mathrm{f}(n)=4^{n+2}+5^{2 n+1}$ divisible by 21		
8	$\begin{aligned} & n=1,4^{3}+5^{3}=189=9 \times 21 \\ & \left(\text { Or } n=0,4^{2}+5^{1}=21\right) \end{aligned}$	$\mathrm{f}(1)=21 \times 9 \quad$ Accept $\mathrm{f}(0)=21$ as an alternative starting point.	B1
	Assume that for $n=k, \mathrm{f}(k)=\left(4^{k+2}+5^{2 k+1}\right)$ is divisible by 21 for $k \in \mathbb{Z}^{+}$.		
	$\mathrm{f}(k+1)-\mathrm{f}(k)=4^{k+3}+5^{2 k+3}-\left(4^{k+2}+5^{2 k+1}\right)$	Applies $\mathrm{f}(k+1)$ with at least 1 power correct. May be just as $\mathrm{f}(k+1)$, or as part of an expression in $\mathrm{f}(k+1)$ and $\mathrm{f}(k)$.	M1
	$=4.4^{k+2}+25.5^{2 k+1}-4^{k+2}-5^{2 k+1}$	For a correct expression in $\mathrm{f}(k+1)$, and possibly $\mathrm{f}(k)$, with powers reduced to those of $\mathrm{f}(k)$.	A1
	$=3.4^{k+2}+24.5^{2 k+1}$		
	$=3 \mathrm{f}(k)+21.5^{2 k+1}$ or $=24 \mathrm{f}(k)-21.4^{k+2}$	For one of these expression or equivalent with obvious factor of 21 in each.	A1
	$\mathrm{f}(k+1)=4 \mathrm{f}(k)+21.5^{2 k+1}$	Makes $\mathrm{f}(k+1)$ the subject or gives clear reasoning of each term other than $\mathrm{f}(k+1)$ being divisible by 21 . Dependent on at least one of the previous accuracy marks being awarded.	dM1
	$\{\mathrm{f}(k+1)$ is divisible by 21 as both $\mathrm{f}(k)$ and 21 are both divisible by 21$\}$		
	If the result is true for $\boldsymbol{n}=\boldsymbol{k}$, then it is now true for $\boldsymbol{n}=\boldsymbol{k}+\mathbf{1}$. As the result has shown to be true for \boldsymbol{n} $=\mathbf{1}($ or $\mathbf{0})$, then the result is true for all $\boldsymbol{n}\left(\in \mathbb{Z}^{+}\right)$.	Correct conclusion seen at the end. Condone true for $n=1$ stated earlier. Depends on both M's andA's, but may be scored if the B is lost as long as at least $\mathrm{f}(1)=189$ was reached (so e.g. if the 21×9 was not shown)	A1 cso
			(6)
ALT for first 4 marks	$\begin{aligned} & n=1,4^{3}+5^{3}=189=9 \times 21 \\ & \left(\text { Or } n=0,4^{2}+5^{1}=21\right) \end{aligned}$	As main scheme.	B1
	$\mathrm{f}(k+1)-\alpha \mathrm{f}(k)=4^{k+3}+5^{2 k+3}-\alpha\left(4^{k+2}+5^{2 k+1}\right)$	Attempts $\mathrm{f}(k+1)$ in any equation (as main scheme).	M1
	$\mathrm{f}(k+1)-\alpha \mathrm{f}(k)=(4-\alpha) 4^{k+2}+(25-\alpha) 5^{2 k+1}$	For a correct expression with any α, with powers reduced to match $\mathrm{f}(k)$.	A1
	$\begin{aligned} & \mathrm{f}(k+1)-\alpha \mathrm{f}(k)=(4-\alpha)\left(4^{k+2}+5^{2 k+1}\right)+21.5^{2 k+1} \\ & \mathrm{f}(k+1)-\alpha \mathrm{f}(k)=(25-\alpha)\left(4^{k+2}+5^{2 k+1}\right)-21.4^{k+2} \end{aligned}$	Any suitable equation with powers sorted appropriately to match $\mathrm{f}(k)$	A1
	NB: $\alpha=0, \alpha=4, \alpha=25$ will make relevant term awarded accordingly.	disappear, but marks should be	
			Total 6

