Pearson

Mark Scheme (Results)

January 2018

Pearson Edexcel
International Advanced Subsidiary Level
In Further Pure Mathematics F1 (WFM01)
Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2018
Publications Code WFM01_01_1801_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- o.e. - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \square or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$, leading to $\mathrm{x}=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $\mathrm{x}=\ldots$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, q \neq 0$, leading to $\mathrm{x}=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^{n} \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. $\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

Method mark for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

January 2018 WFM01 Further Pure Mathematics F1 Mark Scheme

	Question 1 Notes	
1. (a)	Note	Incorrect differentiation followed by their estimate of α with no evidence of applying the NR formula is final dM0A0.
	dM1	This mark can be implied by applying at least one correct value of either $\mathrm{f}(1.5)$ or $\mathrm{f}^{\prime}(1.5)$ to 1 significant figure in $1.5-\frac{\mathrm{f}(1.5)}{\mathrm{f}^{\prime}(1.5)}$. So just $1.5-\frac{\mathrm{f}(1.5)}{\mathrm{f}^{\prime}(1.5)}$ with an incorrect answer and no other evidence scores final dM0A0.
	Note	You can imply the M1A1 marks for algebraic differentiation for either - $\mathrm{f}^{\prime}(1.5)=6(1.5)+\frac{5}{6}(1.5)^{-\frac{3}{2}}$ - $\mathrm{f}^{\prime}(1.5)$ applied correctly in $\alpha \simeq 1.5-\frac{3(1.5)^{2}-\frac{5}{3}(1.5)^{-\frac{1}{2}}-6}{6(1.5)+\frac{5}{6}(1.5)^{-\frac{3}{2}}}$
	Note	Differentiating INCORRECTLY to give $\mathrm{f}^{\prime}(x)=6 x-\frac{5}{6} x^{-2}$ leads to $\alpha \simeq 1.5-\frac{-0.6108276349 \ldots}{9.3703703704 \ldots}=1.565187139 \ldots=1.565(3 \mathrm{dp})$ This response should be awarded M1 A0 dM1 A0
	Note	Differentiating INCORRECTLY to give $\mathrm{f}^{\prime}(x)=6 x-\frac{5}{6} x^{-\frac{3}{2}}$ leads to $\alpha \simeq 1.5-\frac{-0.6108276349 \ldots}{8.546390788 \ldots}=1.571471999 \ldots=1.571$ (3 dp) This response should be awarded M1 A0 dM1 A0
	S.C.	Special Case: Differentiating INCORRECTLY to give $\mathrm{f}^{\prime}(x)=6 x-\frac{5}{6} x^{-\frac{3}{2}}$ and $\alpha \simeq 1.5-\frac{\mathrm{f}(1.5)}{\mathrm{f}^{\prime}(1.5)}=1.571$ is M1 A0 dM1 A0
1. (b)	Note	$\frac{\alpha-1.5}{1.6-\alpha}=\left\|\frac{"-0.6108276349 \ldots . . "}{" 0.3623843083 \ldots . . "}\right\|$ is a valid method for the first M mark
	Note	$\frac{\alpha-1.5}{1.6-\alpha}=\frac{" 0.6108276349 \ldots . . "}{" 0.3623843083 \ldots . .} \Rightarrow \alpha=1.563$ with no intermediate working is M1 dM1 A1
	Note	$\frac{\alpha-1.5}{-0.6108276349 \ldots . .}=\frac{1.6-\alpha}{0.3623843083 \ldots} \Rightarrow \alpha=1.745861961 \ldots=1.745(3 \mathrm{dp}) \text { is M0 dM0 A0 }$
	Note	$\frac{\alpha-1.5}{-0.6108276349 \ldots}=\frac{1.6-\alpha}{-0.3623843083 \ldots} \Rightarrow \alpha=1.562764092 \ldots=1.563(3 \mathrm{dp}) \text { is M1 dM1 A1 }$

	Question 2 Notes	
2. (a)	Note	No working leading to $x=1+4 \mathrm{i}, 1-4 \mathrm{i}$ is M0A0M0A0M0A0.
	Note	You can assume $x \equiv z$ for solutions in this question.
	Note	Give dM1A1 for $z^{2}-2 z+17=0 \Rightarrow z=1+4 \mathrm{i}, 1-4 \mathrm{i}$ with no intermediate working.
	Note Note	Special Case: If their second 3 term quadratic factor can be factorised then give Special Case dM 1 for correct factorisation leading to $z=$... Otherwise, give $3^{\text {rd }} \mathrm{dM} 0$ for applying a method of factorising to solve their 3TQ.
	Note	Reminder: Method Mark for solving a 3TQ, " $a z^{2}+b z+c=0$ " Formula: Attempt to use the correct formula (with values for a, b and c) Completing the square: $\left(z \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, q \neq 0, \text { leading to } z=\ldots$

Question Number	Scheme		Notes	Marks
3. (a)	$\sum_{r=1}^{n} r^{2}(r+1)=\sum_{r=1}^{n} r^{3}+\sum_{r=1}^{n} r^{2}$			
	$=\frac{1}{4} n^{2}(n+1)^{2}+\frac{1}{6} n(n+1)(2 n+1)$	Attempts to expand $r^{2}(r+1)$ and attempts to substitute at least one correct standard formula into their resulting expression.		M1
		Correct expression (or equivalent)		A1
	$=\frac{1}{12} n(n+1)[3 n(n+1)+2(2 n+1)]$	dependent on the previous M mark Attempt to factorise at least $n(n+1)$ having attempted to substitute both standard formulae.		dM1
	$=\frac{1}{12} n(n+1)\left[3 n^{2}+7 n+2\right]$	\{this step does not have to be written\}		
	$=\frac{1}{12} n(n+1)(n+2)(3 n+1)$	Correct completion with no errors. Note: $a=3, b=1$		A1
				(4)
(b)	$\sum_{r=5}^{25} r^{2}(r+1)+\sum_{r=1}^{k} 3^{r}=140543$	$\left\{\right.$ Note: Let $\mathrm{f}(n)=\frac{1}{12} n(n+1)(n+2)(3 n+1)$ or their answer to part (a).\}		
	$\begin{aligned} \left\{\sum_{r=5}^{25} r^{2}(r+1)\right\} & =\left(\frac{1}{12}(25)(26)(27)(76)\right)-\left(\frac{1}{12}(4)(5)(6)(13)\right. \\ \{ & =111150-130=111020\} \end{aligned}$		Attempts to find either $f(25)-f(4)$ or $f(25)-f(5)$ This mark can be implied	M1
	$\sum_{r=1}^{k} 3^{r}=140543-" 111020 "\{=29523\}$		dependent on the previous M mark $\begin{array}{r} \text { their } \sum_{r=1}^{k} 3^{r}=140543-" 111020 " \\ \text { This mark can be implied } \end{array}$	dM1
	$\frac{3\left(1-3^{k}\right)}{1-3} \text { or } \frac{3\left(3^{k}-1\right)}{3-1}$		Correct GP sum formula with $a=3, r=3, n=k$	M1
	$\left\{\frac{3\left(1-3^{k}\right)}{1-3}=29523 \Rightarrow 3^{k}=19683 \Rightarrow\right\}$	$k=9$	$k=9$ from a correct solution	A1 cso
				(4)
(b) Alt 1	Alt 1 Method for the final 2 marks			M1
	$\begin{aligned} & \sum_{r=1}^{k} 3^{r}=29523 \\ & \Rightarrow 3+3^{2}+3^{3}+3^{4}+3^{5}+3^{6}+3^{7}+3^{8}+3^{9} \\ & \text { or } 3+9+27+81+243+729+2187+6561+19683 \end{aligned}$		Attempts to solve $\sum_{r=1}^{k} 3^{r}=$ value by evaluating 3^{r} from $r=1$ to at least as far as $r=9$	
	$=29523$, so $k=9$		$k=9$ from a correct solution	A1 cso
(b) Alt 2	Alt 2 Method for the final 2 marks			
	$\sum_{r=1}^{k} 3^{r}=29523 \Rightarrow 3\left(1+3+3^{2}+3^{3}+\ldots+3^{k-1}\right)=29523$			
	$\left\{\sum_{r=1}^{k} 3^{r}=\sum_{r=1}^{k-1} 3^{r}+3^{k}=\right\} \frac{" 29523 "}{3}-1+3^{k}=" 29523 "$		$\frac{" 29523 "}{3}-1+3^{k}={ }^{29523 "}$	M1
	$\left\{3^{k}=19683 \Rightarrow\right\} \quad k=9$		$k=9$ from a correct solution	A1 cso
				8

	Question 3 Notes	
3. (a)	Note	Applying e.g. $n=1, n=2$ to the printed equation without applying the standard formulae to give $a=3, b=1$ is M0A0M0A0
	Alt 1 $\begin{gathered} \text { dM1 } \\ \text { A1 cso } \end{gathered}$	Alt Method 1 (Award the first two marks using the main scheme) Using $\frac{1}{12}\left(3 n^{4}+10 n^{3}+9 n^{2}+2 n\right) \equiv \frac{1}{12}\left(a n^{4}+(3 a+b) n^{3}+(2 a+3 b) n^{2}+2 b n\right) \quad$ o.e. Equating coefficients to find both $a=\ldots$ and $b=\ldots$ and at least one of $a=3, b=1$ Finds $a=3, b=1$ and demonstrates the identity works for all of its terms.
	Alt 2 dM1 A1	Alt Method 2: (Award the first two marks using the main scheme) $\frac{1}{4} n^{2}(n+1)^{2}+\frac{1}{6} n(n+1)(2 n+1) \equiv \frac{1}{12} n(n+1)(n+2)(a n+b)$ Substitutes $n=1, n=2$, into this identity o.e. and solves to find both $a=\ldots$ and $b=\ldots$ and at least one of $a=3, b=1$. Note: $n=1$ gives $4=a+b$ and $n=2$ gives $7=2 a+b$ Finds $a=3, b=1$
	Note	Allow final dM1A1 for $\frac{1}{4} n^{4}+\frac{5}{6} n^{3}+\frac{3}{4} n^{2}+\frac{1}{6} n$ or $\frac{1}{12} n\left(3 n^{3}+10 n^{2}+9 n+2\right)$ or $\frac{1}{12}\left(3 n^{4}+10 n^{3}+9 n^{2}+2 n\right) \rightarrow \frac{1}{12} n(n+1)(n+2)(3 n+1)$ with no incorrect working.
	Note	A correct proof $\sum_{r=1}^{n} r^{2}(r+1)=\frac{1}{12} n(n+1)(n+2)(3 n+1)$ followed by stating an incorrect e.g. $a=1, b=3$ is M1A1dM1A1 (ignore subsequent working)
(b)	Note	Using $f(25)-f(5)$ gives - $\mathrm{f}(25)-\mathrm{f}(5)=111150-280=110870$ - $\sum_{r=1}^{k} 3^{r}=140543-" 110870 "=29673$
	Note	$\left.\left.\begin{array}{l} \text { Allow } 1^{\text {st }} \text { M1 for either } \\ \qquad \begin{array}{rl} \left\{\sum_{r=5}^{25} r^{2}(r+1)\right\} & =\left(\frac{1}{4}(25)^{2}(26)^{2}+\frac{1}{6}(25)(26)(51)\right)-\left(\frac{1}{4}(4)^{2}(5)^{2}+\frac{1}{6}(4)(5)(9)\right) \\ & \{=(105625+5525)-(100+30)=111150-130=111020\} \end{array} \\ \text { - }\left\{\sum_{r=5}^{25} r^{2}(r+1)\right\} \end{array}\right\}\left(\frac{1}{4}(25)^{2}(26)^{2}+\frac{1}{6}(25)(26)(51)\right)-\left(\frac{1}{4}(5)^{2}(6)^{2}+\frac{1}{6}(5)(6)(11)\right)\right\}$
	Note	$\frac{3\left(1-3^{k}\right)}{1-3}$ or $\frac{3\left(3^{k}-1\right)}{3-1}=29523 \Rightarrow k=9$ with no intermediate working is $2^{\text {nd }} \mathrm{M} 12^{\text {nd }} \mathrm{A} 1$
	Note	$\sum_{r=1}^{k} 3^{r}=29523 \Rightarrow k=9$ with no intermediate working is $2^{\text {nd }} \mathrm{M} 12^{\text {nd }} \mathrm{A} 1$

Question Number	Scheme	Notes	Marks
4.	$3 x^{2}+2 x+5=0$ has roots α, β		
(a)	$\alpha+\beta=-\frac{2}{3}, \alpha \beta=\frac{5}{3}$		
	$\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=\ldots \ldots$.	Use of the correct identity for $\alpha^{2}+\beta^{2}$ (May be implied by their work)	M1
	$=\left(-\frac{2}{3}\right)^{2}-2\left(\frac{5}{3}\right)=-\frac{26}{9}$	$-\frac{26}{9}$ or $-2 \frac{8}{9}$ from correct working	A1 cso
			(2)
(b)	$\begin{aligned} \alpha^{3}+\beta^{3} & =(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)=\ldots . . \\ \text { or } & =(\alpha+\beta)\left(\alpha^{2}+\beta^{2}-\alpha \beta\right)=\ldots . . \end{aligned}$	Use of an appropriate and correct identity for $\alpha^{3}+\beta^{3}$ (May be implied by their work)	M1
	$\begin{aligned} & =\left(-\frac{2}{3}\right)^{3}-3\left(\frac{5}{3}\right)\left(-\frac{2}{3}\right)=\frac{82}{27} * \\ \text { or } & =\left(-\frac{2}{3}\right)\left(-\frac{26}{9}-\frac{5}{3}\right)=\frac{82}{27} * \end{aligned}$	$\frac{82}{27}$ from correct working	A1 * cso
			(2)
(c)	$\begin{array}{c\|c} \text { Sum }=\alpha+\frac{\alpha}{\beta^{2}}+\beta+\frac{\beta}{\alpha^{2}} & \text { or }=\frac{\alpha \beta^{2}+\alpha}{\beta^{2}}+\frac{\alpha^{2} \beta+\beta}{\alpha^{2}} \\ =\alpha+\beta+\frac{\alpha^{3}+\beta^{3}}{(\alpha \beta)^{2}} & =\frac{\alpha^{3}+\beta^{3}+\alpha^{2} \beta^{2}(\alpha+\beta)}{\alpha^{2} \beta^{2}} \end{array}$	Simplifies $\frac{\alpha}{\beta^{2}}+\frac{\beta}{\alpha^{2}}$ to give either $\frac{\alpha^{3}+\beta^{3}}{(\alpha \beta)^{2}}$ or $\frac{\alpha^{3}+\beta^{3}}{\alpha^{2} \beta^{2}}$ and substitutes at least one of their $\alpha+\beta, \alpha^{3}+\beta^{3}$ or $\alpha \beta$ into an expression for the sum of $\left(\alpha+\frac{\alpha}{\beta^{2}}\right)$ and $\left(\beta+\frac{\beta}{\alpha^{2}}\right)$	M1
	$=\left(-\frac{2}{3}\right)+\frac{\left(\frac{82}{27}\right)}{\left(\frac{5}{3}\right)^{2}}\left\{=-\frac{2}{3}+\frac{82}{75}=\frac{32}{75}\right\}$		
	$\left.\begin{array}{l\|l} \text { Product }=\left(\alpha+\frac{\alpha}{\beta^{2}}\right)\left(\beta+\frac{\beta}{\alpha^{2}}\right) & \text { or }=\left(\frac{\alpha \beta^{2}+\alpha}{\beta^{2}}\right)\left(\frac{\alpha^{2} \beta+\beta}{\alpha^{2}}\right) \\ =\alpha \beta+\frac{\alpha \beta}{\alpha^{2}}+\frac{\alpha \beta}{\beta^{2}}+\frac{\alpha \beta}{\alpha^{2} \beta^{2}} \\ =\alpha \beta+\frac{\beta}{\alpha}+\frac{\alpha}{\beta}+\frac{1}{\alpha \beta} \\ =\alpha \beta+\frac{\beta^{2}+\alpha^{2}}{\alpha \beta}+\frac{1}{\alpha \beta} \\ =\left(\frac{\alpha^{3}}{3}\right)+\frac{\left(-\frac{26}{9}\right)}{\left(\frac{5}{3}\right)}+\frac{1}{\alpha^{2} \beta^{2} \beta+\alpha \beta} \\ \left(\frac{5}{3}\right) \end{array}=\frac{\alpha^{3} \beta^{3}+\alpha \beta\left(\beta^{2}+\alpha^{2}\right)+\alpha \beta}{\alpha^{2} \beta^{2}}-\frac{26}{15}+\frac{3}{5}=\frac{8}{15}\right\}, ~ l$	Expands $\left(\alpha+\frac{\alpha}{\beta^{2}}\right)\left(\beta+\frac{\beta}{\alpha^{2}}\right)$ to give 4 terms and substitutes either their $\alpha \beta$ at least once or their $\alpha^{2}+\beta^{2}$ into their resulting expression	M1
	$x^{2}-\frac{32}{75} x+\frac{8}{15}=0$	Applies $x^{2}-($ sum $) x+$ product (can be implied), where sum and product are numerical values. Note: " $=0$ " not required for this mark	M1
	$75 x^{2}-32 x+40=0$	Any integer multiple of $75 x^{2}-32 x+40=0$, including the " $=0$ "	A1
			(4)
			8

	Question 4 Notes	
4. (a)	Note	Writing a correct $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$ without attempting to substitute at least one of either their $\alpha+\beta$ or their $\alpha \beta$ into $(\alpha+\beta)^{2}-2 \alpha \beta$ is M0
	Note	Give M1A0 for $\alpha+\beta=\frac{2}{3}, \alpha \beta=\frac{5}{3}$ leading to $\alpha^{2}+\beta^{2}=\left(\frac{2}{3}\right)^{2}-2\left(\frac{5}{3}\right)=-\frac{26}{9}$
	Note	Give M1A1 for writing $\alpha^{2}+\beta^{2}=-\frac{26}{9}$ with no evidence of applying $\alpha+\beta=-\frac{2}{3}, \alpha \beta=\frac{5}{3}$
(b)	Note	Allow M1 A1 for $\begin{aligned} \alpha^{3}+\beta^{3} & =\left(\alpha^{2}+\beta^{2}\right)(\alpha+\beta)-\alpha \beta(\alpha+\beta) \\ & =\left(-\frac{26}{9}\right)\left(-\frac{2}{3}\right)-\left(-\frac{2}{3}\right)\left(\frac{5}{3}\right)\left\{=\frac{52}{27}+\frac{10}{9}\right\}=\frac{82}{27} * \end{aligned}$
	Note	Writing a correct $\alpha^{3}+\beta^{3}=(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)$ without attempting to substitute at least one of either their $\alpha+\beta$ or their $\alpha \beta$ into $(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)$ is M0
	Note	Writing a correct $\alpha^{3}+\beta^{3}=(\alpha+\beta)\left(\alpha^{2}+\beta^{2}-\alpha \beta\right)$ without attempting to substitute at least one of either their $\alpha+\beta$, their $\alpha^{2}+\beta^{2}$ or their $\alpha \beta$ into $(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)$ is M0
(a), (b)	Note	Applying $\frac{-1+\sqrt{14} \mathrm{i}}{3}, \frac{-1-\sqrt{14} \mathrm{i}}{3}$ explicitly will score (a) M0A0, (b) M0A0 - E.g. In part (a), give no credit for $\left(\frac{-1+\sqrt{14} i}{3}\right)^{2}+\left(\frac{-1-\sqrt{14} i}{3}\right)^{2}=-\frac{26}{9}$ - E.g. In part (b), give no credit for $\left(\frac{-1+\sqrt{14} \mathrm{i}}{3}\right)^{3}+\left(\frac{-1-\sqrt{14} \mathrm{i}}{3}\right)^{3}=\frac{82}{17}$
	Note	Using $\frac{-1+\sqrt{14} \mathrm{i}}{3}, \frac{-1-\sqrt{14} \mathrm{i}}{3}$ to find $\alpha+\beta=-\frac{2}{3}, \alpha \beta=\frac{5}{3}$ followed by - $\alpha^{2}+\beta^{2}=\left(\frac{2}{3}\right)^{2}-2\left(\frac{5}{3}\right)=-\frac{26}{9}$, scores M1 A0 in part (a) - $\alpha^{3}+\beta^{3}=\left(-\frac{2}{3}\right)^{3}-3\left(\frac{5}{3}\right)\left(-\frac{2}{3}\right)=\frac{82}{27}$, scores M1A0 in part (b)
(c)	Note	A correct method leading to $a=75, b=-32, c=40$ without writing a final answer of $75 x^{2}-32 x+40=0$ is final M1A0.
	Note	Using $\frac{-1+\sqrt{14} \mathrm{i}}{3}, \frac{-1-\sqrt{14} \mathrm{i}}{3}$ explicitly to find the sum and product of $\left(\alpha+\frac{\alpha}{\beta^{2}}\right)$ and $\left(\beta+\frac{\beta}{\alpha^{2}}\right)$ scores M0M0M0A0 in part (c).
	Note	$\operatorname{Using} \frac{-1+\sqrt{14} \mathrm{i}}{3}, \frac{-1-\sqrt{14} \mathrm{i}}{3}$ to find $\alpha+\beta=-\frac{2}{3}, \alpha \beta=\frac{5}{3}$ and applying $\alpha+\beta=-\frac{2}{3}, \alpha \beta=\frac{5}{3}$ can potentially score full marks in part (c). E.g. - $\operatorname{Sum}=\alpha+\beta+\frac{\alpha^{3}+\beta^{3}}{(\alpha \beta)^{2}}=\left(-\frac{2}{3}\right)+\frac{\left(\frac{82}{27}\right)}{\left(\frac{5}{3}\right)^{2}}=\frac{32}{75}$ - Product $=\alpha \beta+\frac{\beta^{2}+\alpha^{2}}{\alpha \beta}+\frac{1}{\alpha \beta}=\left(\frac{5}{3}\right)+\frac{\left(-\frac{26}{9}\right)}{\left(\frac{5}{3}\right)}+\frac{1}{\left(\frac{5}{3}\right)}=\frac{8}{15}$ - $x^{2}-\frac{32}{75} x+\frac{8}{15}=0 \Rightarrow 75 x^{2}-32 x+40=0$

Question Number	Scheme		Notes	Marks
5.	(i) $\frac{2 z+3}{z+5-2 \mathrm{i}}=1+\mathrm{i}$ (ii) $w=(3+\lambda \mathrm{i})(2+\mathrm{i})$ and $\|w\|=15$			
(i)	$2 z+3=(1+\mathrm{i})(z+5-2 \mathrm{i})$		Multiplies both sides by ($z+5-2 \mathrm{i}$)	M1
	$2 z+3=z+5-2 \mathrm{i}+\mathrm{i} z+5 \mathrm{i}+2=z+\mathrm{i} z+7+3 \mathrm{i}$			
	E.g. - $2 z-z(1+\mathrm{i})=(1+\mathrm{i})(5-2 \mathrm{i})-3$ - $z-\mathrm{i} z=4+3 \mathrm{i}$		dependent on the previous M mark Collects terms in z to one side	dM1
	$z=\frac{4+3 \mathrm{i}}{1-\mathrm{i}}$	Correct expression for $z=\ldots$		A1
	$z=\frac{(4+3 \mathrm{i})}{(1-\mathrm{i})} \frac{(1+\mathrm{i})}{(1+\mathrm{i})}=\frac{1}{2}+\frac{7}{2} \mathrm{i}$	dependent on both previous M marks Multiplies numerator and denominator by the conjugate of the denominator and attempts to find $z=\ldots$		ddM1
		e.g. $\frac{1}{2}+\frac{7}{2} \mathrm{i}$ or $\frac{7}{2} \mathrm{i}+\frac{1}{2}$ or $0.5+3.5 \mathrm{i}$ or $a=\frac{1}{2}, b=\frac{7}{2}$		A1 cao
				(5)
(i) Way 2	$2 z+3=(1+\mathrm{i})(z+5-2 \mathrm{i})$		Multiplies both sides by ($z+5-2 \mathrm{i}$)	M1
	$\begin{aligned} & 2(a+b \mathrm{i})+3=(1+\mathrm{i})(a+b \mathrm{i}+5-2 \mathrm{i}) \\ & (2 a+3)+2 b \mathrm{i}=a+b \mathrm{i}+5-2 \mathrm{i}+a i-b+5 \mathrm{i}+2 \\ & (2 a+3)+2 b \mathrm{i}=(a-b+7)+(b+a+3) \mathrm{i} \\ & \quad \text { Real } \Rightarrow\} \quad 2 a+3=a-b+7 \\ & \text { \{Imaginary } \Rightarrow\} \quad 2 b=b+a+3 \end{aligned}$		dependent on the previous M mark Applies $z=a+b \mathrm{i}$, multiplies out and attempts to equate either the real part or the imaginary part of the resulting equation	dM1
			Both correct equations which can be simplified or un-simplified	A1
	$\left\{\begin{array}{r} a+b=4 \\ -a+b=3 \end{array}\right\} \Rightarrow b=\frac{7}{2}, a=\frac{1}{2}$	dependent on both previous M marks. Obtains two equations both in terms of a and b and solves them simultaneously to give at least one of $a=\ldots$ or $b=\ldots$ e.g. $a=\frac{1}{2}, b=\frac{7}{2}$ or $\frac{1}{2}+\frac{7}{2} \mathrm{i}$ or $\frac{7}{2} \mathrm{i}+\frac{1}{2}$ or $0.5+3.5 \mathrm{i}$		ddM1
				A1 cao
				(5)
(ii)	$\begin{aligned} & w=6+3 \mathrm{i}+2 \mathrm{i} \lambda-\lambda \\ & w=(6-\lambda)+(3+2 \lambda) \mathrm{i} \\ & (15)^{2}=(6-\lambda)^{2}+(3+2 \lambda)^{2} \end{aligned}$		Squares and adds the real and imaginary parts of w and sets equal to either 15^{2} or 15	M1
			Correct equation which can be simplified or un-simplified	A1
	$\begin{aligned} & \left\{225=36-12 \lambda+\lambda^{2}+9+12 \lambda+4 \lambda^{2}\right\} \\ & 225=45+5 \lambda^{2} \Rightarrow \lambda^{2}=36 \end{aligned}$		dependent on the previous M mark Solves their quadratic in λ to give $\lambda^{2}=\ldots$ or $\lambda=$.	dM1
	$\lambda=6,-6$		$\lambda=6,-6$	A1
				(4)
$\begin{gathered} \text { (ii) } \\ \text { Way } 2 \end{gathered}$	$\begin{aligned} & \{\|(3+\lambda \mathrm{i})(2+\mathrm{i})\|=15 \Rightarrow\} \\ & \quad \sqrt{\left(3^{2}+\lambda^{2}\right)} \sqrt{\left(2^{2}+1^{2}\right)}=15 \\ & \text { or } \quad\left(3^{2}+\lambda^{2}\right)(5)=(15)^{2} \end{aligned}$		$\begin{aligned} & \sqrt{\left(3^{2}+\lambda^{2}\right)} \sqrt{\left(2^{2}+1^{2}\right)}=15 \\ & \text { or }\left(3^{2}+\lambda^{2}\right)\left(2^{2}+1^{2}\right)=15 \end{aligned}$	M1
			Correct equation which can be simplified or un-simplified	A1
	$45=9+\lambda^{2} \Rightarrow \lambda^{2}=36$		dependent on the previous M mark Solves their quadratic in λ to give $\lambda^{2}=\ldots$ or $\lambda=\ldots$	dM1
	$\lambda=6,-6$		$\lambda=6,-6$	A1
				(4)
				9

Question Number	Scheme		Notes	Marks
5.	2z+3			
(i) Way 5	$\frac{2 z+3}{1+\mathrm{i}}=z+5-2 \mathrm{i}$			
	$\frac{(2 z+3)}{(1+\mathrm{i})} \frac{(1-\mathrm{i})}{(1-\mathrm{i})}=z+5-2 \mathrm{i}$		Multiplies $\frac{(2 z+3)}{(1+\mathrm{i})}$ by $\frac{(1-\mathrm{i})}{(1-\mathrm{i})}$ and sets equal to $z+5-2 \mathrm{i}$	M1
	$\frac{(2 z+3)(1-\mathrm{i})}{2}=z+5-2 \mathrm{i}$			
	$2 z+3-2 \mathrm{i} z-3 \mathrm{i}=2 z+10-4 \mathrm{i}$			
	$2 \mathrm{i} z=-7+\mathrm{i}$		dependent on the previous M mark Rearranges to make $2 \mathrm{i} z=$	dM1
			Correct expression for $2 \mathrm{i} z=\ldots$	A1
	$-2 z=-7 \mathrm{i}-1 \Rightarrow z=\ldots$		dependent on both previous M marks Multiplies both sides by i and attempts to find $z=\ldots$	ddM1
	$z=\frac{1}{2}+\frac{7}{2} \mathrm{i}$		e.g. $\frac{1}{2}+\frac{7}{2} \mathrm{i}$ or $\frac{7}{2} \mathrm{i}+\frac{1}{2}$ or $0.5+3.5 \mathrm{i}$	A1
	Question 5 Notes			
5. (i)	Note	Way 4 method generates $z=\frac{1}{2}+\frac{7}{2} \mathrm{i}$ and $z=-5+2 \mathrm{i}$ but $z=\frac{1}{2}+\frac{7}{2} \mathrm{i}$ must be stated as the only answer for the final A mark		
	Note	Give final A0 for a correct $a=\frac{1}{2}, b=\frac{7}{2}$ followed by an incorrect $\{z=\} \frac{7}{2}+\frac{1}{2} \mathrm{i}$		
	Note	$\{z=\} \frac{1}{2}+\mathrm{i} \frac{7}{2}$ is fine for the final A mark		
	Note	Give final A0 for $\{z=\} \frac{1+7 \mathrm{i}}{2}$ without reference to e.g. $a=\frac{1}{2}, b=\frac{7}{2}$ or $\frac{1}{2}+\frac{7}{2} \mathrm{i}$, etc.		
(ii)	Note	$w=(6-\lambda)+(3+2 \lambda) \mathrm{i} \Rightarrow(15)^{2}=(6-\lambda)^{2}-(3+2 \lambda)^{2}$ is $1^{\text {st }} \mathrm{M} 0$		
	Note	$\|(3+\lambda \mathrm{i})(2+\mathrm{i})\|=15 \Rightarrow \sqrt{\left(3^{2}-\lambda^{2}\right)} \sqrt{\left(2^{2}-1^{2}\right)}=15 \text { is } 1^{\text {st }} \mathrm{M} 0$		
	Note	Give final A0 for either - $\lambda=6,-6 \Rightarrow \lambda=6$ - $\lambda=6,-6 \Rightarrow \lambda=-6$		

	Question 6 Notes	
6. (d)	Note	Condone $y=2 \pm \sqrt{12}$ for the 2nd A1 mark.
	Note	Do not allow ($-1+\sqrt{3}, 2+\sqrt{12}$), ($-1-\sqrt{3}, 2-\sqrt{12})$ for the final A mark.
	Note	Writing $x=-1 \pm \sqrt{3}, y=2 \pm 2 \sqrt{3}$ without any evidence of the correct coordinate pairings is final A0
	Note	Writing coordinates the wrong way round E.g. writing $x=-1+\sqrt{3}, y=2+2 \sqrt{3}$ and $x=-1-\sqrt{3}, y=2-2 \sqrt{3}$ followed by $(-1+\sqrt{3}, 2-2 \sqrt{3}),(-1-\sqrt{3}, 2+2 \sqrt{3})$ is final A0
	Note	Imply the $1^{\text {st }} \mathrm{dM} 1$ mark for writing down the correct roots for their quadratic equation. E.g. - $2 x^{2}+4 x-4=0$ or $x^{2}+2 x-2=0$ or $2 x^{2}+4 x=4 \rightarrow x=-1 \pm \sqrt{3}$ - $\frac{1}{2} y^{2}-2 y-4=0$ or $y^{2}-4 y-8=0 \rightarrow y=2 \pm 2 \sqrt{3}$
	Note	You can imply the $1^{\text {st }} \mathrm{A} 1,1^{\text {st }} \mathrm{dM} 1,2^{\text {nd }} \mathrm{A} 1$ marks for either - $x(2 x+4)=4$ or $\frac{4}{x}=2 x+4 \rightarrow x=-1 \pm \sqrt{3}$ - $\left(\frac{y-4}{2}\right) y=4$ or $y=2\left(\frac{4}{y}\right)+4 \rightarrow y=2 \pm 2 \sqrt{3}$ with no intermediate working.
	Note	You can imply the $1^{\text {st }} \mathrm{A} 1,1^{\text {st }} \mathrm{dM} 1,2^{\text {nd }} \mathrm{A} 1,2^{\text {nd }} \mathrm{dM} 1$ marks for either - $x(2 x+4)=4$ or $\frac{4}{x}=2 x+4 \rightarrow x=-1 \pm \sqrt{3}$ and $y=2 \pm 2 \sqrt{3}$ - $\left(\frac{y-4}{2}\right) y=4$ or $y=2\left(\frac{4}{y}\right)+4 \rightarrow y=2 \pm 2 \sqrt{3}$ and $x=-1 \pm \sqrt{3}$ with no intermediate working. You can then imply the final A1 mark if they correctly state the correct coordinate pairings.
	Note	$\mathbf{2}^{\text {nd }}$ A1: Allow this mark for both correct x coordinates or both correct y coordinates which are in the form $\frac{a \pm b \sqrt{c}}{d}$, where a, b, c and d are simplified integers

Question Number	Scheme		Notes	Marks
7.	$\mathbf{A}=\left(\begin{array}{rr}6 & k \\ -3 & -4\end{array}\right), k \neq 8 ; \mathbf{A}^{2}+3 \mathbf{A}^{-1}=\left(\begin{array}{rr}5 & 9 \\ -3 & -5\end{array}\right) ; \mathbf{M}=\left(\begin{array}{cc}-\frac{1}{2} & -\sqrt{3} \\ \frac{\sqrt{3}}{2} & -1\end{array}\right)$			
(i)(a)	$\operatorname{det}(\mathbf{A})=6(-4)-(k)(-3) \quad\{=-24+3 k\}$	Correct $\operatorname{det}(\mathbf{A})$ which can be un-simplifed or simplifed		B1
	$\left\{\mathbf{A}^{-1}=\right\} \frac{1}{3 k-24}\left(\begin{array}{rr}-4 & -k \\ 3 & 6\end{array}\right)$		$\left(\begin{array}{rr}-4 & -k \\ 3 & 6\end{array}\right)$	M1
			Correct \mathbf{A}^{-1}	A1
				(3)
(b)	$\left\{\mathbf{A}^{2}=\right\}\left(\begin{array}{rr}36-3 k & 6 k-4 k \\ -18+12 & -3 k+16\end{array}\right)\left\{=\left(\begin{array}{cc}36-3 k & 2 k \\ -6 & -3 k+16\end{array}\right)\right\}$		Correct \mathbf{A}^{2} which can be un-simplifed or simplifed	B1
				(1)
(c)	- $\left(\begin{array}{cc}36-3 k & 2 k \\ -6 & -3 k+16\end{array}\right)+\frac{3}{3 k-24}\left(\begin{array}{cc}-4 & -k \\ 3 & 6\end{array}\right)=\left(\begin{array}{rr}5 & 9 \\ -3 & -5\end{array}\right)$ - $36-3 k-\frac{12}{3 k-24}=5$ - $2 k-\frac{3 k}{3 k-24}=9$ - $-6+\frac{9}{3 k-24}=-3$ - $-3 k+16+\frac{18}{3 k-24}=-5$ Either - attempts to form an equation for (their $\left.\mathbf{A}^{2}\right)+3\left(\right.$ their $\left.\mathbf{A}^{-1}\right)=\left(\begin{array}{rr}5 & 9 \\ -3 & -5\end{array}\right)$ in k - or attempts to add an element of (their \mathbf{A}^{2}) to the corresponding element of $3\left(\right.$ their \mathbf{A}^{-1}) and equates to the corresponding element of the given matrix to form an equation in k			M1
	$\left\{\right.$ e.g. $\left.-6+\frac{9}{3 k-24}=-3\right\} \Rightarrow k=9$	dependent on the previous M mark Solves their equation to give $k=\ldots$		dM1
			Final answer of $k=9$ only	A1
				(3)
	Note: Parts (ii)(a) and (ii)(b) can be marked together Please refer to the notes on the next page when marking (ii)(a) and (ii)(b)			
(ii)(a)	- $p=\left(-\frac{1}{2}\right)(-1)-(-\sqrt{3})\left(\frac{\sqrt{3}}{2}\right)=2$ - $-p \sin \theta=-\sqrt{3}, p \cos \theta=-1$ - $p=\sqrt{(\pm \sqrt{3})^{2}+(-1)^{2}}=2$ ○ $p=\frac{-\sqrt{3}}{-\sin " 120^{\circ "}}=2$ or $p=\frac{-1}{\cos " 120^{\circ "}}=2$		Attempts $p= \pm \frac{1}{2} \pm(\sqrt{3})\left(\frac{\sqrt{3}}{2}\right)$ or uses a full method of trigonometry to find $p=\ldots$	M1
			$p=2$ only	A1
				(2)
(b)	$\cos \theta=-\frac{1}{2}, \sin \theta=\frac{\sqrt{3}}{2}, \tan \theta=-\sqrt{3}$ E.g. - $\Rightarrow \theta=120^{\circ}$ - $\Rightarrow \theta=180-\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)=120^{\circ}$ - $\Rightarrow \theta=180-\tan ^{-1}(\sqrt{3})=120^{\circ}$	Uses trigonometry to find an expression or value for θ which is in the range ($1.57 \ldots, 3.14 \ldots$) or $\left(90^{\circ}, 180^{\circ}\right)(-3.14 \ldots,-4.71 \ldots)$ or $\left(-180^{\circ},-270^{\circ}\right)$		M1
			$0^{\circ} \text { or }-240^{\circ} \text { or } \frac{2 \pi}{3} \text { or }-\frac{4 \pi}{3}$ or awrt 2.09 or awrt -4.19	A1
				(2)
				11

Question 7 Notes

	Question 7 Notes	
7. (i)(c)	Note Note	Give $1^{\text {st }} \mathrm{M} 1$ for $\left(\begin{array}{cc}36-3 k-\frac{12}{3 k-24} & 2 k-\frac{3 k}{3 k-24} \\ -6+\frac{9}{3 k-24} & -3 k+16-\frac{18}{3 k-24}\end{array}\right)=\left(\begin{array}{rr}5 & 9 \\ -3 & -5\end{array}\right)$ - $36-3 k-\frac{12}{3 k-24}=5 \rightarrow 3 k^{2}-55 k+252=0 \rightarrow(k-9)(3 k-28)=0 \rightarrow k=9, \frac{28}{3}$ - $2 k-\frac{3 k}{3 k-24}=9 \rightarrow k^{2}-13 k+36=0 \rightarrow(k-9)(k-4)=0 \rightarrow k=9,4$ - $-6+\frac{9}{3 k-24}=-3 \rightarrow k=9$ - $-3 k+16-\frac{18}{3 k-24}=-5 \rightarrow k^{2}-15 k+54=0 \rightarrow(k-9)(k-6)=0 \rightarrow k=9,6$
	Note	Uses a correct element equation in part (c) leading to $k=9$ is M1 dM1 A1 even if they have followed through an incorrect \mathbf{A}^{-1} in (i)(a) or an incorrect \mathbf{A}^{2} in (ii)(b).
	Note	Give M0 dM0 A0 for an incorrect method of $36-3 k-4=5 \Rightarrow k=9$
(ii)	Note	$\mathbf{M}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & p\end{array}\right)=\left(\begin{array}{cc}-\frac{1}{2} & -\sqrt{3} \\ \frac{\sqrt{3}}{2} & -1\end{array}\right) \Rightarrow\left(\begin{array}{cc}\cos \theta & -p \sin \theta \\ \sin \theta & p \cos \theta\end{array}\right)=\left(\begin{array}{cc}-\frac{1}{2} & -\sqrt{3} \\ \frac{\sqrt{3}}{2} & -1\end{array}\right)$
	Note	IMPORTANT NOTE Give (ii)(a) M0A0 (b) M0A0 for a method of $\mathbf{M}=\left(\begin{array}{ll} 1 & 0 \\ 0 & p \end{array}\right)\left(\begin{array}{cc} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array}\right)=\left(\begin{array}{cc} -\frac{1}{2} & -\sqrt{3} \\ \frac{\sqrt{3}}{2} & -1 \end{array}\right) \Rightarrow\left(\begin{array}{cc} \cos \theta & -\sin \theta \\ p \sin \theta & p \cos \theta \end{array}\right)=\left(\begin{array}{cc} -\frac{1}{2} & -\sqrt{3} \\ \frac{\sqrt{3}}{2} & -1 \end{array}\right)$ leading to (ii)(a) $p=\ldots$, (ii)(b) $\theta=\ldots$
(ii)(a)	Note	$\operatorname{det}(\mathbf{M})=\left(-\frac{1}{2}\right)(-1)-(-\sqrt{3})\left(\frac{\sqrt{3}}{2}\right)=2$ followed by $p=\sqrt{2}$ is M0 A0
	Note	$p=\operatorname{det}(\mathbf{M})=\left(-\frac{1}{2}\right)(-1)-(-\sqrt{3})\left(\frac{\sqrt{3}}{2}\right)=2$ is M1 A1
	Note	$p=\frac{\sqrt{(\pm \sqrt{3})^{2}+(-1)^{2}}}{\sqrt{\left(-\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}}=2 \text { is M1 A1 }$

Question Number	Scheme		Notes	Marks
8.	(i) $u_{1}=3, u_{n+1}=u_{n}+3 n-2, u_{n}=\frac{3}{2} n^{2}-\frac{7}{2} n+5$	(ii) $\mathrm{f}(n)=3^{2 n+3}+40 n-27$ is divisible by 64		
(i)	$n=1, u_{1}=\frac{3}{2}-\frac{7}{2}+5=3$	Uses $u_{n}=\frac{3}{2} n^{2}-\frac{7}{2} n+5$ to show that $u_{1}=3$		B1
	(Assume the result is true for $n=k$)			
	$\begin{aligned} & \left\{u_{k+1}=u_{k}+3 k-2 \Rightarrow\right\} \\ & u_{k+1}=\frac{3}{2} k^{2}-\frac{7}{2} k+5+3 k-2\left\{=\frac{3}{2} k^{2}-\frac{1}{2} k+3\right\} \end{aligned}$	Finds u_{k+1} by attempting to substitute $u_{k}=\frac{3}{2} k^{2}-\frac{7}{2} k+5 \text { into } u_{k+1}=u_{k}+3 k-2$ Condone one slip.		M1
	$=\frac{3}{2}(k+1)^{2}-3 k-\frac{3}{2}-\frac{1}{2} k+3$	dependent on the previous M mark. Attempts to write u_{k+1} in terms of $(k+1)$		dM1
	$=\frac{3}{2}(k+1)^{2}-\frac{7}{2} k+\frac{3}{2}$			
	$=\frac{3}{2}(k+1)^{2}-\frac{7}{2}(k+1)+5$	Uses algebra to achieve this result with no errors		A1
	If the result is true for $n=k$, then it is true for $n=k+1$. As the result has been shown to be true for $n=1$, then the result is true for all $n\left(\in \mathbb{Z}^{+}\right)$			A1 cso
				(5)
$\begin{gathered} \text { (ii) } \\ \text { Way } 1 \end{gathered}$	$\mathrm{f}(1)=3^{5}+40-27=256$		$\mathrm{f}(1)=256$ is the minimum	B1
	$\mathrm{f}(k+1)-\mathrm{f}(k)=\left(3^{2(k+1)+3}+40(k+1)-27\right)-\left(3^{2 k+3}+40 k-27\right)$		Attempts $\mathrm{f}(k+1) \quad \mathrm{f}(k)$	M1
	$\mathrm{f}(k+1)-\mathrm{f}(k)=8\left(3^{2 k+3}\right)+40$			
	$\begin{aligned} & =8\left(3^{2 k+3}+40 k-27\right)-64(5 k-4) \\ \text { or } & =8\left(3^{2 k+3}+40 k-27\right)-320 k+256 \end{aligned}$		$8\left(3^{2 k+3}+40 k-27\right)$ or $8 \mathrm{f}(k)$	A1
			$64(5 k-4)$ or $-320 k+256$	A1
	$\begin{aligned} \mathrm{f}(k+1) & =8 \mathrm{f}(k)-64(5 k-4)+\mathrm{f}(k) \\ \text { or } \mathrm{f}(k+1) & =8 \mathrm{f}(k)-320 k+256+\mathrm{f}(k) \\ \text { or } \mathrm{f}(k+1) & =9\left(3^{2 k+3}+40 k-27\right)-320 k+256 \end{aligned}$	depende Makes $\mathrm{f}(k$	at least one of the previous acy marks being awarded. e subject and expresses it in f $\mathrm{f}(k)$ or $\left(3^{2 k+3}+40 k-27\right)$	dM1
	If the result is true for $n=k$, then it is true for $n=k+1$, As the result has been shown to be true for $n=1$, then the result is true for all $n\left(\in \mathbb{Z}^{+}\right)$			A1 cso
				(6)
$\begin{gathered} \text { (ii) } \\ \text { Way } 2 \end{gathered}$	$\mathrm{f}(1)=3^{5}+40-27=256$		$\mathrm{f}(1)=256$ is the minimum	B1
	$\mathrm{f}(k+1)=3^{2(k+1)+3}+40(k+1)-27$		Attempts $\mathrm{f}(k+1)$	M1
	$\mathrm{f}(k+1)=9\left(3^{2 k+3}\right)+40 k+13$			
	$\begin{aligned} & =9\left(3^{2 k+3}+40 k-27\right)-64(5 k-4) \\ \text { or } & =9\left(3^{2 k+3}+40 k-27\right)-320 k+256 \end{aligned}$		$\left(3^{2 k+3}+40 k-27\right)$ or $9 \mathrm{f}(k)$	A1
			64(5k-4) or $-320 k+256$	A1
	$\begin{aligned} \mathrm{f}(k+1) & =9 \mathrm{f}(k)-64(5 k-4) \\ \text { or } \mathrm{f}(k+1) & =9 \mathrm{f}(k)-320 k+256 \\ \text { or } \mathrm{f}(k+1) & =9\left(3^{2 k+3}+40 k-27\right)-320 k+256 \end{aligned}$	depende Makes $\mathrm{f}(k$	at least one of the previous acy marks being awarded. e subject and expresses it in f $\mathrm{f}(k)$ or $\left(3^{2 k+3}+40 k-27\right)$	dM1
	If the result is true for $n=k$, then it is true for $n=k+1$, As the result has been shown to be true for $n=1$,then the result is true for all $n\left(\in \mathbb{Z}^{+}\right)$			A1 cso
				11

Question Number		Scheme		Notes	Marks
8.	(ii) $\mathrm{f}(n)=3^{2 n+3}+40 n-27$ is divisible by 64				
(ii) Way 3	General Method: Using $\mathrm{f}(k+1) \quad m \mathrm{f}(k)$; where m is an integer				
	$\mathrm{f}(1)=3^{5}+40-27=256$			$\mathrm{f}(1)=256$ is the minimum	B1
	$\mathrm{f}(k+1)-m \mathrm{f}(k)=\left(3^{2(k+1)+3}+40(k+1)-27\right)-m\left(3^{2 k+3}+40 k-27\right)$			Attempts $\mathrm{f}(k+1) \quad m \mathrm{f}(k)$	M1
	$\mathrm{f}(k+1)-m \mathrm{f}(k)=(9-m)\left(3^{2 k+3}\right)+40 k(1-m)+(13+27 m)$				
	$\begin{aligned} & =(9-m)\left(3^{2 k+3}+40 k-27\right)-64(5 k-4) \\ \text { or } & =(9-m)\left(3^{2 k+3}+40 k-27\right)-320 k+256 \end{aligned}$		$(9-m)\left(3^{2 k+3}+40 k-27\right)$ or $(9-m) f(k)$		A1
			$-64(5 k-4)$ or $-320 k+256$		A1
	$\begin{aligned} \mathrm{f}(k+1) & =(9-m) \mathrm{f}(k)-64(5 k-4)+m \mathrm{f}(k) \\ \text { or } \mathrm{f}(k+1) & =(9-m) \mathrm{f}(k)-320 k+256+m \mathrm{f}(k) \end{aligned}$		dependent on at least one of the previous accuracy marks being awarded. Makes $\mathrm{f}(k+1)$ the subject and expresses it in terms of $\mathrm{f}(k)$ or $\left(3^{2 k+3}+40 k-27\right)$		dM1
	If the result is true for $n=k$, then it is true for $n=k+1$, As the result has been shown to be true for $n=1$, then the result is is true for all $n\left(\in \mathbb{Z}^{+}\right)$				A1 cso
(ii)$\text { Way } 4$	General Method: Using $\mathrm{f}(k+1) \quad m \mathrm{f}(k)$				
	$\mathrm{f}(1)=3^{5}+40-27=256$		$\mathrm{f}(1)=256$ is the minimum		B1
	$\mathrm{f}(k+1)-m \mathrm{f}(k)=\left(3^{2(k+1)+3}+40(k+1)-27\right)-m\left(3^{2 k+3}+40 k-27\right)$			Attempts $\mathrm{f}(k+1) \quad m \mathrm{f}(k)$	M1
	$\mathrm{f}(k+1)-m \mathrm{f}(k)=(9-m)\left(3^{2 k+3}\right)+40 k(1-m)+(13+27 m)$				
	$m=-55 \Rightarrow \mathrm{f}(k+1)+55 \mathrm{f}(k)=64\left({ }^{2 k+3}\right)-2240 k+1472$			$m=-55$ and $64\left(3^{2 k+3}\right)$	A1
				$=-55$ and $-2240 k+1472$	A1
	$\begin{aligned} \mathrm{f}(k+1) & =64\left(3^{2 k+3}\right)-2240 k+1472-55 \mathrm{f}(k) \\ \text { or } \mathrm{f}(k+1) & =64\left(3^{2 k+3}\right)-64(35 k-23)-55 \mathrm{f}(k) \end{aligned}$			dent on at least one of the ous accuracy marks being Makes $\mathrm{f}(k+1)$ the subject xpresses it in terms of $\mathrm{f}(k)$	dM1
	If the result is true for $n=k$, then it is true for $n=k+1$, As the result has been shown to be true for $n=1$, then the result is true for all $n\left(\in \mathbb{Z}^{+}\right)$				A1 cso
	Question 8 Notes				
(i) \& (ii)	Note	Final A1 for parts (i) and (ii) is dependent on all previous marks being scored in that part. It is gained by candidates conveying the ideas of all four underlined points either at the end of their solution or as a narrative in their solution.			
(i)	Note	Moving from either $u_{k+1}=\frac{3}{2} k^{2}-\frac{7}{2} k+5+3 k-2$ or $u_{k+1}=\frac{3}{2} k^{2}-\frac{1}{2} k+3$ to $u_{k+1}=\frac{3}{2}(k+1)^{2}-\frac{7}{2}(k+1)+5$ with no intermediate stage involving either - writing u_{k+1} as a function of $(k+1)$ - or writing u_{k+1} as $u_{k+1}=\frac{3}{2} k^{2}+3 k+\frac{3}{2}-\frac{7}{2} k-\frac{7}{2}+5$ is dM1A0A0			
	Note	Some candidates will write down $u_{k+1}=\frac{3}{2} k^{2}-\frac{7}{2} k+5+3 k-2\left(\right.$ give $\left.\mathbf{1}^{\text {st }} \mathbf{M 1}\right)$ and simplify this to $u_{k+1}=\frac{3}{2} k^{2}-\frac{1}{2} k+3$ They will then write $u_{k+1}=\frac{3}{2}(k+1)^{2}-\frac{7}{2}(k+1)+5$ (give $2^{\text {nd }} \mathbf{M} 1$) and use algebra to show that $u_{k+1}=\frac{3}{2}(k+1)^{2}-\frac{7}{2}(k+1)+5=\frac{3}{2}\left(k^{2}+2 k+1\right)-\frac{7}{2} k-\frac{7}{2}+5=\frac{3}{2} k^{2}-\frac{1}{2} k+3\left(\right.$ give $\left.\mathbf{1}^{\text {st }} \mathbf{A 1}\right)$			

	Question 8 Notes Continued			
8. (ii)	Note	Some candidates may set $\mathrm{f}(k)=64 \mathrm{M}$ and so may prove the following general result - $\{\mathrm{f}(k+1)=9 \mathrm{f}(k)-64(5 k-4)\} \Rightarrow \mathrm{f}(k+1)=576 M-64(5 k-4)$ - $\{\mathrm{f}(k+1)=9 \mathrm{f}(k)-320 k+256\} \Rightarrow \mathrm{f}(k+1)=576 M-320 k+256$		
	Note	$\mathrm{f}(n)=3^{2 n+3}+40 n-27$ can be rewritten as either $\mathrm{f}(n)=27\left(3^{2 n}\right)+40 n-27$ or $\mathrm{f}(n)=27\left(9^{n}\right)+40 n-27$		
	Note	In part (ii), Way 4 there are many alternatives where candidates focus on isolating $\beta\left(3^{2 k+3}\right)$ where β is a multiple of 64 . Listed below are some alternative results: - $\mathrm{f}(k+1)=128\left(3^{2 k+3}\right)-119 \mathrm{f}(k)+4800 k-3200$ - $\mathrm{f}(k+1)=-64\left(3^{2 k+3}\right)+73 \mathrm{f}(k)-2880 k+1984$ See below for how these are derived.		
8. (ii)	(ii) $\mathrm{f}(n)=3^{2 n+3}+40 n-27$ is divisible by 64			
	The A1A1dM1 marks for Alternatives using $\mathrm{f}(k+1) \quad m \mathrm{f}(k)$			
Way 4.1	$\mathrm{f}(k+1)=9\left(3^{2 k+3}\right)+40 k+13$			
	$=128\left(3^{2 k+3}\right)-119\left(3^{2 k+3}\right)+40 k+13$			
	$=128\left(3^{2 k+3}\right)-119\left[3^{2 k+3}+40 k-27\right]+4800 k-3200$		$m=-119$ and 128(3 $3^{2 k+3}$)	A1
			$m=-119$ and $4800 k-3200$	A1
	$\begin{aligned} \mathrm{f}(k+1) & =128\left(3^{2 k+3}\right)-119 \mathrm{f}(k)+4800 k-3200 \\ \text { or } \mathrm{f}(k+1) & =128\left(3^{2 k+3}\right)-119\left[3^{2 k+3}+40 k-27\right]+4800 k-3200 \end{aligned}$		as before	dM1
Way 4.2	$\mathrm{f}(k+1)=9\left(3^{2 k+3}\right)+40 k+13$			
	$=-64\left(3^{2 k+3}\right)+73\left(3^{2 k+3}\right)+40 k+13$			
	$=-64\left(3^{2 k+3}\right)+73\left[3^{2 k+3}+40 k-27\right]-2880 k+1984$		$m=73$ and $-64\left(3^{2 k+3}\right)$	A1
			$m=73$ and $-2880 k+1984$	A1
	$\begin{aligned} \mathrm{f}(k+1) & =-64\left(3^{2 k+3}\right)+73 \mathrm{f}(k)-2880 k+1984 \\ \text { or } \mathrm{f}(k+1) & =-64\left(3^{2 k+3}\right)+73\left[3^{2 k+3}+40 k-27\right]-2880 k+1984 \end{aligned}$		as before	dM1

