

Mark Scheme (Results)

January 2018

Pearson Edexcel International Advanced Subsidiary Level In Further Pure Mathematics F1 (WFM01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2018 Publications Code WFM01_01_1801_MS All the material in this publication is copyright © Pearson Education Ltd 2018

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- o.e. or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^{2}+bx+c) = (x+p)(x+q)$, where |pq| = |c|, leading to x = ...

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to x = ...

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

<u>Use of a formula</u>

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

January 2018 WFM01 Further Pure Mathematics F1 Mark Scheme

Question Number	Scheme				Notes	Marks	
1.	Given $f(x) = 3x^2 - \frac{5}{3\sqrt{x}} - \frac{5}{3\sqrt{x}}$	6, $x > 0$ and root,	, α , of f((x) = 0 lies in	n the interval [1.5, 1.6]		
(a)	$f'(x) = 6x + \frac{5}{6}x^{-\frac{3}{2}}$	At le	east one o	f either $3x^2$	$\rightarrow \pm Ax$ or $-\frac{5}{3\sqrt{x}} \rightarrow \pm Bx^{-\frac{3}{2}}$	M1	
	6		20		A and B are non-zero constants.	A 1	
					the simplified or un-simplified	A1	
	$\left\{\alpha \simeq 1.5 - \frac{f(1.5)}{f'(1.5)}\right\} \Longrightarrow \alpha \simeq$	$1.5 - \frac{-0.6108276}{9.4536092}$	0.6108276349dependent on the previous M mark Valid attempt at Newton-Raphson using their values of f(1.5) and f'(1.5)				
	$\{\alpha = 1.564613167\} \Rightarrow \alpha$	=1.565 (3 dp)	dependent on all 3 previous marks				
				-	nore any subsequent iterations)		
		-	ed by a correct answer of 1.565 scores full marks in part (a) with <u>no</u> working scores no marks in part (a)				
(b)	Either	inswei with <u>no</u> wo	n King SCC			(4)	
	• $\frac{\alpha - 1.5}{"0.6108276349"} = \frac{\alpha}{"}$ • $\frac{\alpha - 1.5}{1.6 - \alpha} = \frac{"0.61082763}{"0.36238439}$	$\frac{\alpha - 1.5}{108276349"} = \frac{1.6 - \alpha}{"0.3623843083"}$ A correct linear interpolation method. $\frac{1.5}{-\alpha} = \frac{"0.6108276349"}{"0.3623843083"}$ A correct linear interpolation method. Do not allow this mark if a total of one or three negative lengths are used or if either fraction is the wrong way up. This mark may be implied.			M1		
	• $\alpha = 1.5 + \left(\frac{1}{0.3623843}\right)$	$\frac{6349") + (1.5)("0.3623843083")}{13083" + "0.6108276349"} dependent on the previous M mark \frac{0.6108276349"}{083" + "0.6108276349"} (0.1) \frac{"-0.6108276349"}{13083" + "-0.6108276349"} (0.1)$			dM1		
	$\{\alpha = 1.562764092\} \Rightarrow \alpha$	=1.563 (3 dp)		(Ig	1.563 nore any subsequent iterations)	A1 cao (3)	
(b)	r	0.1 - r	(0.1)("0 61082763	3/10 ")	(3)	
Way 2	$\frac{x}{"0.6108276349"} = \frac{x}{"0.36}$	$\frac{0.1}{523843083"} \Rightarrow$	$x = \frac{(0.1)(0.1)}{0.1}$				
	$\alpha = 1.5 + 0.062764092$		s		nds x using a correct method of gles and applies " $1.5 +$ their x"	M1 dM1	
	$\{\alpha = 1.562764092\} \Rightarrow \alpha$				1.563	A1 cao	
(b) Way 3	$\frac{0.1 - x}{"0.6108276349"} = \frac{0.1 - x}{"0.30}$	$\frac{x}{523843083"} \Rightarrow .$	$x = \frac{(0.1)(0.1)(0.1)}{0.1}$	"0.36238430 .9732119432	$\frac{083")}{2} = 0.037235908$		
	$\alpha = 1.6 - 0.037235908$		5		nds x using a correct method of gles and applies " $1.6 -$ their x"	M1 dM1	
	$\{\alpha = 1.562764092\} \Rightarrow \alpha$	=1.563 (3 dp)			1.563	A1 cao	
						7	

		Question 1 Notes
1. (a)	Note	Incorrect differentiation followed by their estimate of α with no evidence of applying the
		NR formula is final dM0A0.
	dM1	This mark can be implied by applying at least one correct <i>value</i> of either $f(1.5)$ or $f'(1.5)$
		to 1 significant figure in $1.5 - \frac{f(1.5)}{f'(1.5)}$. So just $1.5 - \frac{f(1.5)}{f'(1.5)}$ with an incorrect answer
		and no other evidence scores final dM0A0.
	Note	You can imply the M1A1 marks for algebraic differentiation for either
		• $f'(1.5) = 6(1.5) + \frac{5}{6}(1.5)^{-\frac{3}{2}}$
		• f'(1.5) applied correctly in $\alpha \approx 1.5 - \frac{3(1.5)^2 - \frac{5}{3}(1.5)^{-\frac{1}{2}} - 6}{6(1.5) + \frac{5}{6}(1.5)^{-\frac{3}{2}}}$
		$6(1.5) + \frac{5}{6}(1.5)^{-\frac{3}{2}}$
	Note	Differentiating INCORRECTLY to give $f'(x) = 6x - \frac{5}{6}x^{-2}$ leads to
		$\alpha \simeq 1.5 - \frac{-0.6108276349}{9.3703703704} = 1.565187139 = 1.565 \text{ (3 dp)}$
		This response should be awarded M1 A0 dM1 A0
	Note	Differentiating INCORRECTLY to give $f'(x) = 6x - \frac{5}{6}x^{-\frac{3}{2}}$ leads to
		$\alpha \simeq 1.5 - \frac{-0.6108276349}{8.546390788} = 1.571471999 = 1.571 \text{ (3 dp)}$
		This response should be awarded M1 A0 dM1 A0
	S.C.	Special Case: Differentiating INCORRECTLY to give $f'(x) = 6x - \frac{5}{6}x^{-\frac{3}{2}}$ and
		$\alpha \simeq 1.5 - \frac{f(1.5)}{f'(1.5)} = 1.571$ is M1 A0 dM1 A0
1. (b)	Note	$\frac{\alpha - 1.5}{1.6 - \alpha} = \left \frac{"-0.6108276349"}{"0.3623843083"} \right $ is a valid method for the first M mark
	Note	$\frac{\alpha - 1.5}{1.6 - \alpha} = \frac{"0.6108276349"}{"0.3623843083"} \Rightarrow \alpha = 1.563 \text{ with no intermediate working is M1 dM1 A1}$
	Note	$\frac{\alpha - 1.5}{-0.6108276349} = \frac{1.6 - \alpha}{0.3623843083} \implies \alpha = 1.745861961 = 1.745 \ (3 \text{ dp}) \text{ is M0 dM0 A0}$
	Note	$\frac{\alpha - 1.5}{-0.6108276349} = \frac{1.6 - \alpha}{-0.3623843083} \implies \alpha = 1.562764092 = 1.563 (3 \text{ dp}) \text{ is M1 dM1 A1}$

Question Number	Scheme		Notes	Marks	
2.	$f(z) = z^4 - 6z^3 + 38z^2 - 94z^3$	$z + 221, \ z_1 = 2 + 3i$	satisfies $f(z) = 0$		
(a)	$\{z_2 = \} 2 - 3i$	2-3i seen or used in part (a)			
	$z^2 - 4z + 13$		Attempt to expand $(z - (2+3i))(z - (2-3i))$ or $(z - (2+3i))(z - (\text{their complex } z_2))$ ny valid method <i>to establish a quadratic factor</i> . $z = 2 \pm 3i \Rightarrow z - 2 = \pm 3i \Rightarrow z^2 - 4z + 4 = -9$ or sum of roots = 4, product of roots 13 to give $z^2 \pm (\text{their sum})z + (\text{their product})$	M1	
		A	$\frac{z^2-4z+13}{z^2-4z+13}$	A1	
	Attempts to find the other quadratic factor. e.g. long division to obtain either $z^2 \pm kz +, k = value$ or $z^2 \pm \alpha z + \beta$, $\beta = value \neq 0$, α can or e.g. factor to obtain either $f(z) = (z^2 - 2z + 5)(z^2 \pm kz \pm c), k = valueor f(z) = (z^2 - 2z + 5)(z^2 \pm \alpha z \pm \beta), \beta = value \neq 0, \alpha canor f(z) = (z^2 - 2z + 5)(z^2 \pm \alpha z \pm \beta), \beta = value \neq 0, \alpha canor f(z) = (z^2 - 2z + 5)(z^2 \pm \alpha z \pm \beta), \beta = value \neq 0, \alpha canor f(z) = (z^2 - 2z + 5)(z^2 \pm \alpha z \pm \beta), \beta = value \neq 0, \alpha canor f(z) = (z^2 - 2z + 5)(z^2 \pm \alpha z \pm \beta), \beta = value \neq 0, \alpha canor f(z) = (z^2 - 2z + 5)(z^2 \pm \alpha z \pm \beta), \beta = value \neq 0, \alpha canor f(z) = (z^2 - 2z + 5)(z^2 \pm \alpha z \pm \beta), \beta = value \neq 0, \alpha canor f(z) = (z^2 - 2z + 5)(z^2 \pm \alpha z \pm \beta), \beta = value \neq 0, \alpha canor f(z) = (z^2 - 2z + 5)(z^2 \pm \alpha z \pm \beta), \beta = value \neq 0, \alpha canor f(z) = (z^2 - 2z + 5)(z^2 \pm \alpha z \pm \beta), \beta = value \neq 0, \alpha canor f(z) = (z^2 - 2z + 5)(z^2 \pm \alpha z \pm \beta), \beta = value \neq 0, \alpha canor f(z) = (z^2 - 2z + 5)(z^2 \pm \alpha z \pm \beta), \beta = value \neq 0, \alpha canor f(z) = (z^2 - 2z + 5)(z^2 \pm \alpha z \pm \beta), \beta = value \neq 0, \alpha canor f(z) = (z^2 - 2z + 5)(z^2 \pm \alpha z \pm \beta), \beta = value \neq 0, \alpha canor f(z) = (z^2 - 2z + 5)(z^2 \pm \alpha z \pm \beta), \beta = value \neq 0, \alpha canor f(z) = (z^2 - 2z + 5)(z^2 \pm \alpha z \pm \beta), \beta = value \neq 0, \alpha canor f(z) = (z^2 - 2z + 5)(z^2 \pm \alpha z \pm \beta), \beta = value \neq 0, \alpha canor f(z) = (z^2 - 2z + 5)(z^2 \pm \alpha z \pm \beta), \beta = value \neq 0, \alpha canor f(z) = (z^2 - 2z + 5)(z^2 \pm \alpha z \pm \beta), \beta = value \neq 0, \alpha canor f(z) = value \neq 0, \alpha canor f(z) = (z^2 - 2z + 5)(z^2 \pm \alpha z \pm \beta), \beta = value \neq 0, \alpha canor f(z) = (z^2 - 2z + 5)(z^2 \pm \alpha z \pm \beta)$			M1	
_			$z^2 - 2z + 17$	A1	
	$\left\{z^2 - 2z + 17 = 0 \Longrightarrow\right\}$				
	Either • $z = \frac{-2 \pm \sqrt{(-2)^2}}{2(1)}$ • $(z - 1)^2 - 1 + 17 = 0$		dependent on only the previous M mark Correct method of applying the quadratic formula or completing the square for solving a 3TQ on their 2 nd quadratic factor	dM1	
	$\{z =\} 1 + 4i, 1 - 4i$		1 + 4i and $1 - 4i$		
				(7)	
(b)	Im $(1,4)$ (2,3) (1,-4) Re		 <u>Criteria</u> 2± 3i plotted correctly in quadrants 1 and 4 Dependent on the final M mark being awarded in part (a). Their final two roots are plotted correctly 		
			Satisfies at least one of the criteria	B1ft	
			Satisfies both criteria with some indication of scale or coordinates stated with at least one pair of roots symmetrical about the real axis		
				(2)	
				9	

		Question 2 Notes					
2. (a)	Note	No working leading to $x = 1 + 4i$, $1 - 4i$ is M0A0M0A0M0A0.					
	Note	You can assume $x \equiv z$ for solutions in this question.					
	Note	Give dM1A1 for $z^2 - 2z + 17 = 0 \Rightarrow z = 1 + 4i, 1 - 4i$ with no intermediate working.					
	Note	Special Case: If their second 3 term quadratic factor can be factorised then					
		give Special Case dM1 for correct factorisation leading to $z =$					
	Note	Otherwise, give 3 rd dM0 for applying a method of factorising to solve their 3TQ.					
	Note	Reminder: Method Mark for solving a 3TQ, " $az^2 + bz + c = 0$ "					
		Formula:					
		Attempt to use the correct formula (with values for a , b and c)					
		Completing the square:					
		$\left(z\pm\frac{b}{2}\right)^2\pm q\pm c=0, q\neq 0$, leading to $z=$					

Question Number	Scheme			Notes	Marks	
3. (a)	$\sum_{r=1}^{n} r^{2}(r+1) = \sum_{r=1}^{n} r^{3} + \sum_{r=1}^{n} r^{2}$					
	$=\frac{1}{4}n^2(n+1)^2+\frac{1}{6}n(n+1)(2n+1)$		-	xpand $r^2(r+1)$ and attempts to ne correct standard formula into their resulting expression.	M1	
			Co	rrect expression (or equivalent)	A1	
	$= \frac{1}{12}n(n+1) \Big[3n(n+1) + 2(2n+1) \Big]$		empt to f	dent on the previous M mark factorise at least $n(n + 1)$ having bestitute both standard formulae.	dM1	
	$= \frac{1}{12}n(n+1) \Big[3n^2 + 7n + 2 \Big]$		{this st	tep does not have to be written}		
	$= \frac{1}{12}n(n+1)[3n^2 + 7n + 2]$ $= \frac{1}{12}n(n+1)(n+2)(3n+1)$		Correct completion with no errors. Note: $a = 3, b = 1$			
					(4)	
(b)	$\sum_{r=1}^{25} r^2 (r+1) + \sum_{r=1}^{k} 3^r = 140543$	{Note: Let $f(n) = \frac{1}{12}n(n+1)(n+2)(3n+1)$				
	r=5 r=1			<i>or their</i> answer to part (a).}		
	$\left\{\sum_{r=5}^{25} r^2(r+1)\right\} = \left(\frac{1}{12}(25)(26)(27)(76)\right)$	$-\left(\frac{1}{-1}(4)(5)(6)\right)$	(13)	Attempts to find either		
	$\sum_{r=5}^{r} r(r+1) \left\{ (12^{(25)(25)(27)(75)}) \right\}$	$(12^{(1)(3)(3)})$	(13)	f(25) - f(4) or	M1	
	{ = 111150 - 130 = 11102	203		f(25) - f(5)		
			denen	This mark can be implied dent on the previous M mark		
	$\sum_{r=1}^{k} 3^{r} = 140543 - "111020" \{= 29523\}$		-	eir $\sum_{r=1}^{k} 3^{r} = 140543 - "111020"$	dM1	
				This mark can be implied		
	$\frac{3(1-3^k)}{1-3}$ or $\frac{3(3^k-1)}{3-1}$			Correct GP sum formula with a = 3, r = 3, n = k	M1	
	$\begin{cases} \frac{3(1-3^k)}{1-3} = 29523 \implies 3^k = 19683 \implies 1 \end{cases}$	$\left. \begin{array}{c} k = 9 \end{array} \right $		k = 9 from a correct solution	A1 cso	
					(4)	
(b)	Alt 1 Method for the final 2 marks					
Alt 1	$\sum_{r=1}^{k} 3^{r} = 29523$ $\Rightarrow 3 + 3^{2} + 3^{3} + 3^{4} + 3^{5} + 3^{6} + 3^{7} + 3^{8} + 3^{9}$			ttempts to solve $\sum_{r=1}^{k} 3^{r}$ = value y evaluating 3^{r} from $r = 1$ to at	M1	
	or $3+9+27+81+243+729+2187$	+6561+19683	-	least as far as $r=9$		
	= 29523, so $k = 9$			k = 9 from a correct solution	A1 cso	
(b)	Alt 2 Method for the final 2 marks					
Alt 2	$\sum_{r=1}^{k} 3^{r} = 29523 \implies 3(1+3+3^{2}+3^{3}+\dots)$	$+3^{k-1}) = 295$	523			
	$\left\{\sum_{r=1}^{k} 3^{r} = \sum_{r=1}^{k-1} 3^{r} + 3^{k} = \right\} \frac{"29523"}{3} - 1 + $	3 ^{<i>k</i>} = "29523"		$\frac{"29523"}{3} - 1 + 3^k = "29523"$	M1	
	$\left\{3^k = 19683 \Longrightarrow\right\} k = 9$			k = 9 from a correct solution	A1 cso	
					8	

	Question 3 Notes						
3. (a)	Note	Applying e.g. $n = 1$, $n = 2$ to the printed equation without applying the standard formulae to give $a = 3$, $b = 1$ is M0A0M0A0					
	Alt 1	Alt Method 1 (Award the first two marks using the main scheme)					
		Using $\frac{1}{12}(3n^4 + 10n^3 + 9n^2 + 2n) \equiv \frac{1}{12}(an^4 + (3a+b)n^3 + (2a+3b)n^2 + 2bn)$ o.e.					
	dM1 A1 cso	Equating coefficients to find both $a =$ and $b =$ and at least one of $a = 3, b = 1$ Finds $a = 3, b = 1$ and demonstrates the identity works for all of its terms.					
	Alt 2	Alt Method 2: (Award the first two marks using the main scheme)					
	dM1	$\frac{1}{4}n^{2}(n+1)^{2} + \frac{1}{6}n(n+1)(2n+1) \equiv \frac{1}{12}n(n+1)(n+2)(an+b)$ Substitutes $n = 1, n = 2$, into this identity o.e. and solves to find both $a =$ and $b =$ and at least one of $a = 3, b = 1$. Note: $n = 1$ gives $4 = a + b$ and $n = 2$ gives $7 = 2a + b$					
	A1	Finds $a=3, b=1$					
	Note	Allow final dM1A1 for $\frac{1}{4}n^4 + \frac{5}{6}n^3 + \frac{3}{4}n^2 + \frac{1}{6}n$ or $\frac{1}{12}n(3n^3 + 10n^2 + 9n + 2)$					
		or $\frac{1}{12}(3n^4 + 10n^3 + 9n^2 + 2n) \rightarrow \frac{1}{12}n(n+1)(n+2)(3n+1)$ with no incorrect working.					
	Note	A correct proof $\sum_{r=1}^{n} r^2(r+1) = \frac{1}{12}n(n+1)(n+2)(3n+1)$ followed by stating an incorrect					
		e.g. $a=1, b=3$ is M1A1dM1A1 (ignore subsequent working)					
(b)	Note	Using $f(25) - f(5)$ gives					
		• $f(25) - f(5) = 111150 - 280 = 110870$					
		• $\sum_{r=1}^{k} 3^{r} = 140543 - "110870" = 29673$					
	Note	Allow 1 st M1 for either					
		• $\left\{\sum_{r=5}^{25}r^2(r+1)\right\} = \left(\frac{1}{4}(25)^2(26)^2 + \frac{1}{6}(25)(26)(51)\right) - \left(\frac{1}{4}(4)^2(5)^2 + \frac{1}{6}(4)(5)(9)\right)$					
		$\left\{ = (105625 + 5525) - (100 + 30) = 111150 - 130 = 111020 \right\}$					
		• $\left\{\sum_{r=5}^{25} r^2 (r+1)\right\} = \left(\frac{1}{4}(25)^2 (26)^2 + \frac{1}{6}(25)(26)(51)\right) - \left(\frac{1}{4}(5)^2 (6)^2 + \frac{1}{6}(5)(6)(11)\right)$					
		$\left\{ = (105625 + 5525) - (225 + 55) = 111150 - 280 = 110870 \right\}$					
	Note	$\frac{3(1-3^k)}{1-3} \text{ or } \frac{3(3^k-1)}{3-1} = 29523 \implies k = 9 \text{ with no intermediate working is } 2^{nd} \text{ M1 } 2^{nd} \text{ A1}$					
	Note	$\sum_{r=1}^{k} 3^{r} = 29523 \implies k = 9 \text{ with no intermediate working is } 2^{nd} \text{ M1 } 2^{nd} \text{ A1}$					

$= \left(-\frac{2}{3}\right)^{2} - 2\left(\frac{5}{3}\right) = -\frac{26}{9} \qquad -\frac{26}{9} \qquad -\frac{26}{9} \text{ or } -2\frac{8}{9} \text{ from correct wo}$ $= \left(-\frac{2}{3}\right)^{3} - 3\alpha\beta(\alpha + \beta) = \dots$ or $= (\alpha + \beta)(\alpha^{2} + \beta^{2} - \alpha\beta) = \dots$ $= \left(-\frac{2}{3}\right)^{3} - 3\left(\frac{5}{3}\right)\left(-\frac{2}{3}\right) = \frac{82}{27} * \qquad (May be implied by their or and the set of t$	Marks	Notes		Scheme	Question Number
$\frac{\alpha^{2} + \beta^{2}}{\alpha^{2} + \beta^{2}} = (\alpha + \beta)^{2} - 2\alpha\beta = \dots$ $= \left(-\frac{2}{3}\right)^{2} - 2\left(\frac{5}{3}\right) = -\frac{26}{9}$ $= \left(-\frac{2}{3}\right)^{2} - 2\left(\frac{5}{3}\right) = -\frac{26}{9}$ $= \left(-\frac{2}{9}\right)^{2} - 2\left(\frac{5}{3}\right) = -\frac{26}{9}$ $= \left(-\frac{2}{9}\right)^{2} - 2\left(\frac{5}{3}\right) = -\frac{26}{9}$ $= \left(-\frac{2}{9}\right)^{2} - 2\left(\frac{5}{3}\right) = -\frac{26}{9}$ $= \left(-\frac{2}{3}\right)^{2} - 3\alpha\beta(\alpha + \beta) = \dots$ $= \left(-\frac{2}{3}\right)^{2} - 3\alpha\beta(\alpha + \beta) = \frac{2}{37} + \frac{\alpha^{2}\beta^{2}}{\alpha^{2}\beta^{2}}$ $= \left(-\frac{2}{3}\right)^{2} + \frac{\beta^{2}}{\alpha^{2}}$ $= \left(-\frac{2}{3}\right)^{2} + \frac{\beta^{2}}{\alpha^{2}}$ $= \left(-\frac{2}{3}\right)^{2} + \frac{\beta^{2}}{\alpha^{2}}\right)^{2} = \left(-\frac{2}{3} + \frac{82}{37}\right)^{2} = \frac{32}{75}$ $= \alpha\beta + \frac{\beta^{2}}{\alpha^{2}} + \frac{\alpha\beta}{\alpha^{2}\beta^{2}}$ $= \alpha^{2}\beta^{2} + \frac{\alpha\beta}{\alpha^{2}\beta^{2}}$ $= \left(-\frac{2}{3}\right)^{2} + \frac{\beta^{2}}{\alpha^{2}\beta^{2}}$ $= \left(-\frac{2}{3}\right)^{2} + \frac{\beta^{2}}$		β	= 0 has roots	$3x^2 + 2x + 5 =$	4.
$\frac{\alpha^{2} + \beta^{2}}{\alpha^{2} + \beta^{2}} = (\alpha + \beta)^{2} - 2\alpha\beta = \dots$ $= \left(-\frac{2}{3}\right)^{2} - 2\left(\frac{5}{3}\right) = -\frac{26}{9}$ $= \left(-\frac{2}{3}\right)^{2} - 2\left(\frac{5}{3}\right) = -\frac{26}{9}$ $= \left(-\frac{2}{9}\right)^{2} - 2\left(\frac{5}{3}\right) = -\frac{26}{9}$ $= \left(-\frac{2}{9}\right)^{2} - 2\left(\frac{5}{3}\right) = -\frac{26}{9}$ $= \left(-\frac{2}{9}\right)^{2} - 2\left(\frac{5}{3}\right) = -\frac{26}{9}$ $= \left(-\frac{2}{3}\right)^{2} - 3\alpha\beta(\alpha + \beta) = \dots$ $= \left(-\frac{2}{3}\right)^{2} - 3\alpha\beta(\alpha + \beta) = \frac{2}{37} + \frac{\alpha^{2}\beta^{2}}{\alpha^{2}\beta^{2}}$ $= \left(-\frac{2}{3}\right)^{2} + \frac{\beta^{2}}{\alpha^{2}}$ $= \left(-\frac{2}{3}\right)^{2} + \frac{\beta^{2}}{\alpha^{2}}$ $= \left(-\frac{2}{3}\right)^{2} + \frac{\beta^{2}}{\alpha^{2}}\right)^{2} = \left(-\frac{2}{3} + \frac{82}{37}\right)^{2} = \frac{32}{75}$ $= \alpha\beta + \frac{\beta^{2}}{\alpha^{2}} + \frac{\alpha\beta}{\alpha^{2}\beta^{2}}$ $= \alpha^{2}\beta^{2} + \frac{\alpha\beta}{\alpha^{2}\beta^{2}}$ $= \left(-\frac{2}{3}\right)^{2} + \frac{\beta^{2}}{\alpha^{2}\beta^{2}}$ $= \left(-\frac{2}{3}\right)^{2} + \frac{\beta^{2}}$				$\alpha + \beta = -\frac{2}{3}, \ \alpha\beta = \frac{5}{3}$	(a)
(b) $ \begin{array}{c} \alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta) = \dots \\ \alpha^{7} = (\alpha + \beta)(\alpha^{2} + \beta^{2} - \alpha\beta) = \dots \\ \alpha^{7} = (\alpha + \beta)(\alpha^{2} + \beta^{2} - \alpha\beta) = \dots \\ = \left(-\frac{2}{3}\right)^{3} - 3\left(\frac{5}{3}\right)\left(-\frac{2}{3}\right) = \frac{82}{27} * \\ \alpha^{7} = \left(-\frac{2}{3}\right)\left(-\frac{26}{9} - \frac{5}{3}\right) = \frac{82}{27} * \\ \hline \qquad \qquad$		f the correct identity for $\alpha^2 + \beta^2$ (May be implied by their work	Us	5 5	
(b) $\begin{aligned} \alpha' + \beta' = (\alpha + \beta)' - 3\alpha\beta(\alpha + \beta) = \dots \\ \alpha' = (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta) = \dots \\ \alpha' = (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta) = \dots \\ = \left(-\frac{2}{3}\right)^3 - 3\left(\frac{5}{3}\right)\left(-\frac{2}{3}\right) = \frac{82}{27} * \\ \alpha' = \left(-\frac{2}{3}\right)\left(-\frac{26}{9} - \frac{5}{3}\right) = \frac{82}{27} * \\ \alpha' = \left(-\frac{2}{3}\right)\left(-\frac{26}{9} - \frac{5}{3}\right) = \frac{82}{27} * \\ \alpha' = \left(-\frac{2}{3}\right)\left(-\frac{26}{9} - \frac{5}{3}\right) = \frac{82}{27} * \\ \alpha' = \left(-\frac{2}{3}\right)\left(-\frac{26}{9} - \frac{5}{3}\right) = \frac{82}{27} * \\ \alpha' = \left(-\frac{2}{3}\right)\left(-\frac{26}{9} - \frac{5}{3}\right) = \frac{82}{27} * \\ \alpha' = \left(-\frac{2}{3}\right)\left(-\frac{26}{9} - \frac{5}{3}\right) = \frac{82}{27} * \\ \alpha' = \left(-\frac{2}{3}\right)\left(-\frac{26}{9} - \frac{5}{3}\right) = \frac{82}{27} * \\ \alpha' = \left(-\frac{2}{3}\right)\left(-\frac{26}{9} - \frac{5}{3}\right) = \frac{82}{27} * \\ \alpha' = \left(-\frac{2}{3}\right)\left(-\frac{26}{9} - \frac{5}{3}\right) = \frac{82}{27} * \\ \alpha' = \left(-\frac{2}{3}\right)\left(-\frac{26}{9} - \frac{5}{3}\right) = \frac{82}{27} * \\ \alpha' = \left(-\frac{2}{3}\right)\left(-\frac{26}{9} - \frac{5}{3}\right) = \frac{2}{27} * \\ \alpha' = \left(-\frac{2}{3}\right)\left(-\frac{26}{9} - \frac{2}{3}\right)\left(\frac{2}{9} + \frac{2}{75}\right) = \frac{2}{9} + \frac{2}{9} +$	king A1 cso	$\frac{26}{9}$ or $-2\frac{8}{9}$ from correct working		$=\left(-\frac{2}{3}\right)^2 - 2\left(\frac{5}{3}\right) = -\frac{26}{9}$	
(b) $\begin{aligned} \alpha' + \beta' = (\alpha + \beta)' - 3\alpha\beta(\alpha + \beta) = \dots \\ \alpha' = (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta) = \dots \\ \alpha' = (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta) = \dots \\ = \left(-\frac{2}{3}\right)^3 - 3\left(\frac{5}{3}\right)\left(-\frac{2}{3}\right) = \frac{82}{27} * \\ \alpha' = \left(-\frac{2}{3}\right)\left(-\frac{26}{9} - \frac{5}{3}\right) = \frac{82}{27} * \\ \alpha' = \left(-\frac{2}{3}\right)\left(-\frac{26}{9} - \frac{5}{3}\right) = \frac{82}{27} * \\ \alpha' = \left(-\frac{2}{3}\right)\left(-\frac{26}{9} - \frac{5}{3}\right) = \frac{82}{27} * \\ \alpha' = \left(-\frac{2}{3}\right)\left(-\frac{26}{9} - \frac{5}{3}\right) = \frac{82}{27} * \\ \alpha' = \left(-\frac{2}{3}\right)\left(-\frac{26}{9} - \frac{5}{3}\right) = \frac{82}{27} * \\ \alpha' = \left(-\frac{2}{3}\right)\left(-\frac{26}{9} - \frac{5}{3}\right) = \frac{82}{27} * \\ \alpha' = \left(-\frac{2}{3}\right)\left(-\frac{26}{9} - \frac{5}{3}\right) = \frac{82}{27} * \\ \alpha' = \left(-\frac{2}{3}\right)\left(-\frac{26}{9} - \frac{5}{3}\right) = \frac{82}{27} * \\ \alpha' = \left(-\frac{2}{3}\right)\left(-\frac{26}{9} - \frac{5}{3}\right) = \frac{82}{27} * \\ \alpha' = \left(-\frac{2}{3}\right)\left(-\frac{26}{9} - \frac{5}{3}\right) = \frac{82}{27} * \\ \alpha' = \left(-\frac{2}{3}\right)\left(-\frac{26}{9} - \frac{5}{3}\right) = \frac{2}{27} * \\ \alpha' = \left(-\frac{2}{3}\right)\left(-\frac{26}{9} - \frac{2}{3}\right)\left(\frac{2}{9} + \frac{2}{75}\right) = \frac{2}{9} + \frac{2}{9} +$	(2)				
$= \left(-\frac{2}{3}\right)^{3} - 3\left(\frac{5}{3}\right)\left(-\frac{2}{3}\right) = \frac{82}{27} * \frac{82}{27} + 82$	$+\beta^3$ M1	se of an appropriate and correct identity for $\alpha^3 + \beta$ (May be implied by their work			(b)
$= \alpha + \beta + \frac{\alpha^3 + \beta^3}{(\alpha\beta)^2} = \frac{\alpha^3 + \beta^3 + \alpha^2\beta^2(\alpha + \beta)}{\alpha^2\beta^2}$ $= \left(-\frac{2}{3}\right) + \frac{\left(\frac{82}{27}\right)}{\left(\frac{5}{3}\right)^2} \left\{= -\frac{2}{3} + \frac{82}{75} = \frac{32}{75}\right\}$ $= \left(-\frac{2}{3}\right) + \frac{\left(\frac{82}{27}\right)}{\left(\frac{5}{3}\right)^2} \left\{= -\frac{2}{3} + \frac{82}{75} = \frac{32}{75}\right\}$ $= \alpha\beta + \frac{\alpha\beta}{\alpha^2} + \frac{\alpha\beta}{\alpha^2} + \frac{\alpha\beta}{\alpha^2\beta^2}$ $= \alpha\beta + \frac{\alpha\beta}{\alpha^2} + \frac{\alpha\beta}{\alpha^2\beta^2} + \frac{\alpha\beta}{\alpha^2\beta^2}$ $= \alpha\beta + \frac{\beta^2}{\alpha^2} + \frac{\alpha\beta}{\alpha^2\beta^2} + \frac{\alpha\beta}{\alpha^2\beta^2}$ $= \alpha\beta + \frac{\beta^2 + \alpha^2}{\alpha\beta} + \frac{1}{\alpha\beta}$ $= \alpha\beta + \frac{\beta^2 + \alpha^2}{\alpha\beta} + \frac{1}{\alpha\beta}$ $= \left(\frac{5}{3}\right) + \frac{\left(-\frac{26}{9}\right)}{\left(\frac{5}{3}\right)} + \frac{1}{\left(\frac{5}{3}\right)} \left\{= \frac{5}{3} - \frac{26}{15} + \frac{3}{5} = \frac{8}{15}\right\}$ $= \alpha\beta + \frac{\beta^2 - \alpha^2}{\alpha\beta^2} + \frac{1}{\alpha\beta}$ $= \left(\frac{5}{3}\right) + \frac{\left(-\frac{26}{9}\right)}{\left(\frac{5}{3}\right)} + \frac{1}{\left(\frac{5}{3}\right)} \left\{= \frac{5}{3} - \frac{26}{15} + \frac{3}{5} = \frac{8}{15}\right\}$ $= \alpha\beta + \frac{\beta^2 - \alpha^2}{\alpha\beta^2} + \frac{1}{\alpha\beta}$ $= \left(\frac{5}{3}\right) + \frac{\left(-\frac{26}{9}\right)}{\left(\frac{5}{3}\right)} + \frac{1}{\left(\frac{5}{3}\right)} \left\{= \frac{5}{3} - \frac{26}{15} + \frac{3}{5} = \frac{8}{15}\right\}$ $= \alpha\beta + \frac{\beta^2 - \alpha^2}{\alpha\beta^2} + \frac{1}{\alpha\beta}$ $= \left(\frac{5}{3}\right) + \frac{(-26)}{\left(\frac{5}{3}\right)} + \frac{1}{\left(\frac{5}{3}\right)} \left\{= \frac{5}{3} - \frac{26}{15} + \frac{3}{5} = \frac{8}{15}\right\}$		$\frac{82}{27}$ from correct working			
$= \alpha + \beta + \frac{\alpha^3 + \beta^3}{(\alpha\beta)^2} = \frac{\alpha^3 + \beta^3 + \alpha^2\beta^2(\alpha + \beta)}{\alpha^2\beta^2}$ $= \left(-\frac{2}{3}\right) + \frac{\left(\frac{82}{27}\right)}{\left(\frac{5}{3}\right)^2} \left\{= -\frac{2}{3} + \frac{82}{75} = \frac{32}{75}\right\}$ $= \left(-\frac{2}{3}\right) + \frac{\left(\frac{82}{27}\right)}{\left(\frac{5}{3}\right)^2} \left\{= -\frac{2}{3} + \frac{82}{75} = \frac{32}{75}\right\}$ $= \alpha\beta + \frac{\alpha\beta}{\alpha^2} + \frac{\alpha\beta}{\alpha^2} + \frac{\alpha\beta}{\alpha^2\beta^2}$ $= \alpha\beta + \frac{\alpha\beta}{\alpha^2} + \frac{\alpha\beta}{\alpha^2\beta^2} + \frac{\alpha\beta}{\alpha^2\beta^2}$ $= \alpha\beta + \frac{\beta^2}{\alpha^2} + \frac{\alpha\beta}{\alpha^2\beta^2} + \frac{\alpha\beta}{\alpha^2\beta^2}$ $= \alpha\beta + \frac{\beta^2 + \alpha^2}{\alpha\beta} + \frac{1}{\alpha\beta}$ $= \alpha\beta + \frac{\beta^2 + \alpha^2}{\alpha\beta} + \frac{1}{\alpha\beta}$ $= \left(\frac{5}{3}\right) + \frac{\left(-\frac{26}{9}\right)}{\left(\frac{5}{3}\right)} + \frac{1}{\left(\frac{5}{3}\right)} \left\{= \frac{5}{3} - \frac{26}{15} + \frac{3}{5} = \frac{8}{15}\right\}$ $= \alpha\beta + \frac{\beta^2 - \alpha^2}{\alpha\beta^2} + \frac{1}{\alpha\beta}$ $= \left(\frac{5}{3}\right) + \frac{\left(-\frac{26}{9}\right)}{\left(\frac{5}{3}\right)} + \frac{1}{\left(\frac{5}{3}\right)} \left\{= \frac{5}{3} - \frac{26}{15} + \frac{3}{5} = \frac{8}{15}\right\}$ $= \alpha\beta + \frac{\beta^2 - \alpha^2}{\alpha\beta^2} + \frac{1}{\alpha\beta}$ $= \left(\frac{5}{3}\right) + \frac{\left(-\frac{26}{9}\right)}{\left(\frac{5}{3}\right)} + \frac{1}{\left(\frac{5}{3}\right)} \left\{= \frac{5}{3} - \frac{26}{15} + \frac{3}{5} = \frac{8}{15}\right\}$ $= \alpha\beta + \frac{\beta^2 - \alpha^2}{\alpha\beta^2} + \frac{1}{\alpha\beta}$ $= \left(\frac{5}{3}\right) + \frac{(-26)}{\left(\frac{5}{3}\right)} + \frac{1}{\left(\frac{5}{3}\right)} \left\{= \frac{5}{3} - \frac{26}{15} + \frac{3}{5} = \frac{8}{15}\right\}$	(2)				
$= \alpha\beta + \frac{\alpha\beta}{\alpha^2} + \frac{\alpha\beta}{\beta^2} + \frac{\alpha\beta}{\alpha^2\beta^2}$ $= \alpha\beta + \frac{\beta}{\alpha} + \frac{\alpha}{\beta} + \frac{1}{\alpha\beta}$ $= \alpha\beta + \frac{\beta^2 + \alpha^2}{\alpha\beta} + \frac{1}{\alpha\beta}$ $= \alpha\beta + \frac{\beta^2 + \alpha^2}{\alpha\beta} + \frac{1}{\alpha\beta}$ $= \frac{\alpha^3\beta^3 + \alpha\beta(\beta^2 + \alpha^2) + \alpha\beta}{\alpha^2\beta^2}$ $= \frac{\alpha^3\beta^3 + \alpha\beta(\beta^2 + \alpha^2) + \alpha\beta}{\alpha^2\beta^2}$ $= \frac{\alpha\beta}{\alpha^2\beta^2}$ $= \frac{\alpha\beta}{\alpha\beta} + \frac{\beta^2 + \alpha^2}{\alpha\beta\beta} + \frac{1}{\alpha\beta\beta}$ $= \frac{\beta^2}{\alpha\beta\beta} + \frac{1}{\alpha\beta\beta}$ $= \frac{\beta^2}{\alpha\beta\beta\beta} + \frac{1}{\alpha\beta\beta}$ $= \frac{\beta^2}{\alpha\beta\beta\beta\beta} + \frac{1}{\alpha\beta\beta}$ $= \frac{\beta^2}{\alpha\beta$	$\frac{\beta^{3}}{\beta^{2}}$ he of M1 $\alpha\beta$ sum	Simplifies $\frac{\alpha}{\beta^2} + \frac{\beta}{\alpha^2}$ to give either $\frac{\alpha^3 + \beta^3}{(\alpha\beta)^2}$ or $\frac{\alpha^3 + \beta^3}{\alpha^2\beta^2}$ and substitutes at least one of their $\alpha + \beta$, $\alpha^3 + \beta^3$ or $\alpha\beta$ into an expression for the sum of $\left(\alpha + \frac{\alpha}{\beta^2}\right)$ and $\left(\beta + \frac{\beta}{\alpha^2}\right)$	$\frac{\alpha^2 \beta^2 (\alpha + \beta)}{\beta^2}$	$= \alpha + \beta + \frac{\alpha^{3} + \beta^{3}}{(\alpha\beta)^{2}} = \frac{\alpha^{3} + \beta^{3} + \alpha}{\alpha^{2}}$ $= \left(-\frac{2}{3}\right) + \frac{\left(\frac{82}{27}\right)}{\left(\frac{5}{3}\right)^{2}} \left\{= -\frac{2}{3} + \frac{82}{75} = \frac{32}{75}\right\}$	(C)
Applies $x^2 - (sum)x + product$ (can be imp	s and tutes once M1 + β^2 lting	Expands $\left(\alpha + \frac{\alpha}{\beta^2}\right) \left(\beta + \frac{\beta}{\alpha^2}\right)$	$\frac{\alpha\beta^3 + \alpha^3\beta + \alpha^2\beta^2}{\alpha^2\beta^2}$ $\frac{\alpha\beta(\beta^2 + \alpha^2) + \alpha^2\beta^2}{\alpha^2\beta^2}$	$= \alpha\beta + \frac{\alpha\beta}{\alpha^2} + \frac{\alpha\beta}{\beta^2} + \frac{\alpha\beta}{\alpha^2\beta^2} = \frac{\alpha^3\beta^3 + \alpha}{\alpha^2\beta^2}$ $= \alpha\beta + \frac{\beta}{\alpha} + \frac{\alpha}{\beta} + \frac{1}{\alpha\beta}$ $= \frac{\alpha^3\beta^3 + \alpha}{\alpha\beta^3} + \frac{1}{\alpha\beta}$	
$x^{2} - \frac{32}{75}x + \frac{3}{15} = 0$ where sum and product are numerical values of the sum of the s	lues. M1	and product are numerical values	where su	$x^2 - \frac{32}{75}x + \frac{8}{15} = 0$	
Any integer multiple of $75x^2 - 32x + 40 = 0$	= 0, =0 " A1	-		$75x^2 - 32x + 40 = 0$	
	(4)				

		Question 4 Notes
4. (a)	Note	Writing a correct $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$ without attempting to substitute at least one
		of either their $\alpha + \beta$ or their $\alpha\beta$ into $(\alpha + \beta)^2 - 2\alpha\beta$ is M0
	Note	Give M1A0 for $\alpha + \beta = \frac{2}{3}$, $\alpha\beta = \frac{5}{3}$ leading to $\alpha^2 + \beta^2 = \left(\frac{2}{3}\right)^2 - 2\left(\frac{5}{3}\right) = -\frac{26}{9}$
	Note	Give M1A1 for writing $\alpha^2 + \beta^2 = -\frac{26}{9}$ with no evidence of applying $\alpha + \beta = -\frac{2}{3}$, $\alpha\beta = \frac{5}{3}$
(b)	Note	Allow M1 A1 for $\alpha^3 + \beta^3 = (\alpha^2 + \beta^2)(\alpha + \beta) - \alpha\beta(\alpha + \beta)$
		$= \left(-\frac{26}{9}\right)\left(-\frac{2}{3}\right) - \left(-\frac{2}{3}\right)\left(\frac{5}{3}\right) \left\{=\frac{52}{27} + \frac{10}{9}\right\} = \frac{82}{27} *$
	Note	Writing a correct $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$ without attempting to substitute
		at least one of either their $\alpha + \beta$ or their $\alpha\beta$ into $(\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$ is M0
	Note	Writing a correct $\alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta)$ without attempting to substitute
		at least one of either their $\alpha + \beta$, their $\alpha^2 + \beta^2$ or their $\alpha\beta$ into $(\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$ is M0
(a), (b)	Note	Applying $\frac{-1+\sqrt{14}i}{3}$, $\frac{-1-\sqrt{14}i}{3}$ explicitly will score (a) M0A0, (b) M0A0
		• E.g. In part (a), give no credit for $\left(\frac{-1+\sqrt{14}i}{3}\right)^2 + \left(\frac{-1-\sqrt{14}i}{3}\right)^2 = -\frac{26}{9}$
		• E.g. In part (b), give no credit for $\left(\frac{-1+\sqrt{14}i}{3}\right)^3 + \left(\frac{-1-\sqrt{14}i}{3}\right)^3 = \frac{82}{17}$
	Note	Using $\frac{-1+\sqrt{14}i}{3}$, $\frac{-1-\sqrt{14}i}{3}$ to find $\alpha + \beta = -\frac{2}{3}$, $\alpha\beta = \frac{5}{3}$ followed by
		• $\alpha^2 + \beta^2 = \left(\frac{2}{3}\right)^2 - 2\left(\frac{5}{3}\right) = -\frac{26}{9}$, scores M1A0 in part (a)
		• $\alpha^3 + \beta^3 = \left(-\frac{2}{3}\right)^3 - 3\left(\frac{5}{3}\right)\left(-\frac{2}{3}\right) = \frac{82}{27}$, scores M1A0 in part (b)
(c)	Note	A correct method leading to $a = 75$, $b = -32$, $c = 40$ without writing a final answer of
		$75x^2 - 32x + 40 = 0$ is final M1A0.
	Note	Using $\frac{-1+\sqrt{14}i}{3}$, $\frac{-1-\sqrt{14}i}{3}$ <i>explicitly</i> to find the sum and product of $\left(\alpha + \frac{\alpha}{\beta^2}\right)$ and $\left(\beta + \frac{\beta}{\alpha^2}\right)$
	Note	scores M0M0M0A0 in part (c).
	nou	Using $\frac{-1+\sqrt{14}i}{3}$, $\frac{-1-\sqrt{14}i}{3}$ to find $\alpha + \beta = -\frac{2}{3}$, $\alpha\beta = \frac{5}{3}$ and applying $\alpha + \beta = -\frac{2}{3}$, $\alpha\beta = \frac{5}{3}$
		can potentially score full marks in part (c). E.g.
		• Sum = $\alpha + \beta + \frac{\alpha^3 + \beta^3}{(\alpha\beta)^2} = \left(-\frac{2}{3}\right) + \frac{\left(\frac{82}{27}\right)}{\left(\frac{5}{3}\right)^2} = \frac{32}{75}$
		• Product = $\alpha\beta + \frac{\beta^2 + \alpha^2}{\alpha\beta} + \frac{1}{\alpha\beta} = \left(\frac{5}{3}\right) + \frac{\left(-\frac{26}{9}\right)}{\left(\frac{5}{3}\right)} + \frac{1}{\left(\frac{5}{3}\right)} = \frac{8}{15}$
		• $x^2 - \frac{32}{75}x + \frac{8}{15} = 0 \implies 75x^2 - 32x + 40 = 0$

Question Number	Scheme		Notes	Marks
5.	(i) $\frac{2z+3}{z+5-2i} =$	1 + i (ii) $w =$	$= (3 + \lambda i)(2 + i)$ and $ w = 15$	
(i)	2z + 3 = (1 + i)(z + 5 - 2i)		Multiplies both sides by $(z + 5 - 2i)$	M1
	2z + 3 = z + 5 - 2i + iz + 5i + 2 =	$= z + \mathbf{i} z + 7 + 3\mathbf{i}$		
	E.g. • $2z - z(1 + i) = (1 + i)(5 - 2i)$ • $z - iz = 4 + 3i$	-3	dependent on the previous M mark Collects terms in z to one side	dM1
	$z = \frac{4+3i}{1-i}$		Correct expression for $z =$	A1
	$z = \frac{(4+3i)}{(1-i)} \frac{(1+i)}{(1+i)} = \frac{1}{2} + \frac{7}{2}i$ Multiplies numerator and denominator by the conjugate of the denominator and attempts to find $z =$			ddM1
	(1-1) $(1+1)$ 2 2	or $\frac{7}{2}i + \frac{1}{2}$ or $0.5 + 3.5i$ or $a = \frac{1}{2}, b = \frac{7}{2}$	A1 cao	
<i>(</i> 1)				(5)
(i)	2z + 3 = (1 + i)(z + 5 - 2i)		Multiplies both sides by $(z + 5 - 2i)$	M1
Way 2	2(a + bi) + 3 = (1 + i)(a + bi + 5 - (2a + 3) + 2bi = a + bi + 5 - 2i + (2a + 3) + 2bi = (a - b + 7) + (b)	ai - b + 5i + 2 + $a + 3)i$	dependent on the previous M mark Applies $z = a + bi$, multiplies out and attempts to equate either the real part or the imaginary part of the resulting equation	dM1
	$\{\text{Real} \Rightarrow\} 2a+3 = a-b$ $\{\text{Imaginary} \Rightarrow\} 2b = b+a$		Both correct equations which can be simplified or un-simplified	A1
	$\begin{cases} a+b=4\\ -a+b=3 \end{cases} \implies b=\frac{7}{2}, a=\frac{1}{2}$	equat	ent on both previous M marks. Obtains two ions both in terms of a and b and solves them ously to give at least one of $a =$ or $b =$ $b = \frac{7}{2}$ or $\frac{1}{2} + \frac{7}{2}i$ or $\frac{7}{2}i + \frac{1}{2}$ or $0.5 + 3.5i$	ddM1 A1 cao
		Z		(5)
(ii)	$w = 6 + 3i + 2i\lambda - \lambda$ $w = (6 - \lambda) + (3 + 2\lambda)i$		Squares and adds the real and imaginary parts of w and sets equal to either 15^2 or 15	M1
	$(15)^2 = (6 - \lambda)^2 + (3 + 2\lambda)^2$		Correct equation which can be simplified or un-simplified	A1
	$\begin{cases} 225 = 36 - 12\lambda + \lambda^2 + 9 + 12\lambda + 225 = 45 + 5\lambda^2 \implies \lambda^2 = 36 \end{cases}$	$+4\lambda^2$	dependent on the previous M mark Solves their quadratic in λ to give $\lambda^2 = \dots$ or $\lambda = \dots$	dM1
	$\lambda = 6, -6$		$\lambda = 6, -6$	A1
/!!\				(4)
(ii) Way 2	$\left\{ \left (3+\lambda i)(2+i) \right = 15 \Longrightarrow \right\}$ $\sqrt{(3^2+\lambda^2)}\sqrt{(2^2+1^2)} = 15$		$\sqrt{(3^2 + \lambda^2)}\sqrt{(2^2 + 1^2)} = 15$ or $(3^2 + \lambda^2)(2^2 + 1^2) = 15$	M1
	or $(3^2 + \lambda^2)(5) = (15)^2$		Correct equation which can be simplified or un-simplified	A1
	$45 = 9 + \lambda^2 \implies \lambda^2 = 36$		dependent on the previous M markSolves their quadratic in λ to give $\lambda^2 = \dots$ or $\lambda = \dots$	dM1
	$\lambda = 6, -6$		$\lambda = 6, -6$	A1
				(4)
				9

Question Number	Scheme			Notes	S	Marks
5.	$\frac{2z+3}{z+5-}$	$\frac{3}{2i} = 1$	+ i			
(i) Way 3	$\frac{2z + 10 - 4i - 7 + 4i}{z + 5 - 2i} = 1 + i$					
	$2 + \frac{-7 + 4i}{z + 5 - 2i} = 1 + i$		$\frac{2z+3}{z+5-2i}$	\rightarrow 2 ±	$\frac{k}{z+5-2\mathrm{i}},\;k\in\mathbb{C}$	M1
	$1 - i = \frac{7 - 4i}{z + 5 - 2i}$					
	$z + 5 - 2i = \frac{7 - 4i}{1 - i}$		Rearra	nges to g	e previous M mark ive $z + 5 - 2i =$	dM1
			Correct ex	pression	for $z + 5 - 2i =$	A1
	$z + 5 - 2i = \frac{(7 - 4i)}{(1 - i)} \frac{(1 + i)}{(1 + i)} \Rightarrow z =$		Multiplies	s numerat conjugate	previous M marks or and denominator of the denominator empts to find $z =$	ddM1
	$\left\{z + 5 - 2\mathbf{i} = \frac{11}{2} + \frac{3}{2}\mathbf{i} \implies \right\} z = \frac{1}{2} + \frac{7}{2}\mathbf{i}$		e.g. $\frac{1}{2} + \frac{7}{2}i$	or $\frac{7}{2}$ i	$+\frac{1}{2}$ or $0.5 + 3.5i$	A1
						(5)
(i) Way 4	$\frac{2(a+bi)+3}{a+bi+5-2i} = 1+i \implies \frac{(2a+3)+2bi}{(a+5)+(b-2)}$	$\frac{1}{1} = 1 + 1$	- i			
	$\left(\frac{(2a+3)+2bi}{(a+5)+(b-2)i}\right)\left(\frac{(a+5)-(b-2)i}{(a+5)-(b-2)i}\right) = 1 - \frac{1}{2}$	+ i				
	$\frac{\left[(2a+3)(a+5)+2b(b-2)\right]+i\left[2b(a+5)-(2a+2)(a+5)^2+(2b+2)^2\right]}{(a+5)^2+(b-2)^2}$	(2a + 3)($\frac{(b-2)]}{2} = 1 - \frac{1}{2}$	+ i		
	{Real \Rightarrow } $\frac{(2a+3)(a+5)+2b(b-2)}{(a+5)^2+(b-2)^2}$ {Imaginary \Rightarrow } $\frac{2b(a+5)-(2a+3)(b-2)}{(a+5)^2+(b-2)^2}$				Applies $z = a + bi$ and a full method leading to equating oth the real part and the imaginary part	M1
	$\{\text{Real} \Rightarrow\} a^2 + b^2 + 3a - 14 = 0$ $\{\text{Imaginary} \Rightarrow\} a^2 + b^2 + 6a - 11b + 23 = 0$		Manipulates	both the	e previous M mark ir real part and their their simplest forms	dM1
	(Both	correct s	simplified equations	A1
	"Real - Imaginary" gives $-3a + 11b - 37 = 0$	ande			- *	
	• $a = \frac{11b - 37}{3} \Rightarrow \left(\frac{11b - 37}{3}\right)^2 + b^2 + 3\left(\frac{1}{2}\right)^2$ • $b = \frac{3a + 37}{11} \Rightarrow a^2 + \left(\frac{3a + 37}{11}\right)^2 + 3a - 3a + 3a + 3a + 3a + 3a + 3a + 3a$	$\frac{1b-37}{3}$ $= 0 \Longrightarrow 0$ $-14 = 0$	$\int -14 = 0$ b =	l So simu	dependent on both previous M marks. slves their equations ltaneously to obtain at least one value of $b = \dots$ or $a = \dots$	ddM1
	$z = \frac{1}{2} + \frac{7}{2}\mathbf{i} \mathbf{only}$		e.g. $\frac{1}{2} + \frac{7}{2}i$	or $\frac{7}{2}$ i	$+\frac{1}{2}$ or $0.5 + 3.5i$	A1
						(5)

Question Number		Scheme	Notes	Marks		
5.		$\frac{2z+3}{z+5-2i}$	= 1 + i			
(i) Way 5	$\frac{2z+1}{1+i}$	$\frac{3}{1} = z + 5 - 2i$				
	$\frac{(2z+3)}{(1+i)}$	$\frac{1}{(1-i)} = z + 5 - 2i$	Multiplies $\frac{(2z+3)}{(1+i)}$ by $\frac{(1-i)}{(1-i)}$ and sets equal to $z + 5 - 2i$	M1		
	$\frac{(2z+3)}{2}$	$\frac{2i(1-i)}{2} = z + 5 - 2i$ 2iz - 3i = 2z + 10 - 4i				
	2z + 3 -	2iz - 3i = 2z + 10 - 4i				
	2i	z = -7 + i	dependent on the previous M mark Rearranges to make $2i z =$	dM1		
			Correct expression for $2i z =$	A1		
	$-2z = -7i - 1 \implies z = \dots$ dependent on both previous M m Multiplies both sides and attempts to find z					
	Z	$z = \frac{1}{2} + \frac{7}{2}i$	e.g. $\frac{1}{2} + \frac{7}{2}i$ or $\frac{7}{2}i + \frac{1}{2}$ or $0.5 + 3.5i$	A1		
				(5)		
		Qu	estion 5 Notes			
5. (i)	Note	Way 4 method generates $z = \frac{1}{2} + \frac{7}{2}i$	and $z = -5 + 2i$ but $z = \frac{1}{2} + \frac{7}{2}i$ must be state	ed as the		
		only answer for the final A mark				
	Note	Give final A0 for a correct $a = \frac{1}{2}, b =$	$=\frac{7}{2}$ followed by an incorrect $\{z=\}$ $\frac{7}{2}+\frac{1}{2}i$			
	Note	$\left\{z=\right\} \frac{1}{2}+i\frac{7}{2}$ is fine for the final A r	nark			
	Note	Give final A0 for $\{z =\}$ $\frac{1+7i}{2}$ without reference to e.g. $a = \frac{1}{2}, b = \frac{7}{2}$ or $\frac{1}{2} + \frac{7}{2}i$, etc.				
(ii)	Note	$w = (6 - \lambda) + (3 + 2\lambda)i \implies (15)^2 = (6 - \lambda)^2 - (3 + 2\lambda)^2 \text{ is } 1^{\text{st}} \text{ M0}$				
	Note	$\left (3+\lambda i)(2+i) \right = 15 \implies \sqrt{(3^2 - \lambda^2)}$				
	Note	Give final A0 for either • $\lambda = 6, -6 \implies \lambda = 6$ • $\lambda = 6, -6 \implies \lambda = -6$,			

Question Number	Scheme				Notes	Marks
6.	$C: y^2 = 32x; S$ is the focus of $C; P(2, x)$	8) lies o	n C ; T lies on	the di	recrix of C. $H: xy = 4$	
(a)	S has coordinates (8, 0)				(8, 0)	B1 cao
(b)	{ <i>PT</i> is parallel to the <i>x</i> -axis \Rightarrow } $T(-8,$ Focus-directrix Property \Rightarrow <i>PT</i> = $\sqrt{8^2 + 6}$			10	<i>PT</i> = 10	(1) B1 cao
		(° -)	10			(1)
(c)	$y = \sqrt{32} x^{\frac{1}{2}} \implies \frac{dy}{dx} = \frac{1}{2} \sqrt{32} x^{-\frac{1}{2}} \text{ or } 2\sqrt{32} x^{-\frac{1}{2}}$	$\frac{1}{2}x^{-\frac{1}{2}}$			$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm k x^{-\frac{1}{2}}; k \neq 0$	
	$y^2 = 32x \implies 2y\frac{dy}{dx} = 32$				$\lambda y \frac{\mathrm{d}y}{\mathrm{d}x} = \mu \; ; \; \lambda, \mu \neq 0$	M1
	$x = 8t^2$, $y = 16t \implies \frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = 16$	$\left(\frac{1}{16t}\right)$	$x = at^2$, $y = 2$	$2at \Rightarrow$	their $\frac{dy}{dt} \times \frac{1}{\text{their } \frac{dy}{dt}}; a \neq 0$	
	So at P , $m_T = 2$				work leading to $m_T = 2$	A1
	Either • $y - 8 = "2"(x - 2)$		gradient m_T ($\neq m_N$	t line method using their which is found by using	M1
	• $8 = "2"(2) + c \implies y = "2"x + \text{their } c$ Correct algebra leading to $y = 2x+4$ *		calculus. Note: m_T must be a valueCorrect solution only			A1 *
						(4)
(d)	$x(2x+4) = 4 \qquad \left(\frac{y-4}{2}\right)y = 4$	•	ites either y = 2x + 4 in			
	$\frac{4}{x} = 2x + 4 \qquad \qquad y = 2\left(\frac{4}{y}\right) + 4 \qquad \qquad \bullet y = \frac{4}{x} \text{ or } x = \frac{4}{y} \text{ into}$				M1	
	$\frac{2}{t} = 2(2t) + 4$		x = 2t and $yan equation i$	l	to $y = 2x + 4$ r x only, y only or t only	
	$2x^{2}+4x-4=0$ or $x^{2}+2x-2=0$ or $\frac{1}{2}y^{2}-2y-4=0$ or $y^{2}-4y-8=0$ or			А	correct 3 term quadratic $2y-4=0, 2=4t^2+4t$	A1
	$4t^2 + 4t - 2 = 0$ or $2t^2 + 2t - 1 = 0$			0} are	acceptable for this mark	
	• $\{x^2 + 2x - 2 = 0 \Rightarrow\} (x+1)^2 - 1 - 2 =$ • $\{2t^2 + 2t - 1 = 0 \Rightarrow\} t = \frac{-2 \pm \sqrt{(2)^2 - 4t^2}}{2(2)}$	$0 \Rightarrow x =$	=		n the previous M mark	
	and either $x = 2\left(\frac{1}{2} \pm \frac{1}{2}\sqrt{3}\right)$ or $y = \frac{2}{\left(\frac{1}{2} \pm \frac{1}{2}\sqrt{3}\right)}$ Correct method (e.g. constrained (the previous with mark thod (e.g. completing the e, applying the quadratic factorising) of solving a d either $x =$ or $y =$	dM1		
	• $\{y^2 - 4y - 8 = 0 \Rightarrow\}$ $y = \frac{4 \pm \sqrt{(-4)^2 - 4(1)(-8)}}{2(1)}$					
	Either $x = -1 \pm \sqrt{3}$ or $y = 2 \pm 2\sqrt{3}$ or be			Both correct <i>x</i> coordinates or both correct <i>y</i> coordinates. (See note)		A1
	E.g. $y = 2(-1 + \sqrt{3}) + 4$ or $y = \frac{4}{(-1 + \sqrt{3})}$	$\frac{1}{2}$, etc.	d	-	ent on the first M mark least one attempt to find the other coordinate	dM1
	Either $(-1+\sqrt{3}, 2+2\sqrt{3}), (-1-\sqrt{3}, 2-2)$ or $x = -1+\sqrt{3}, y = 2+2\sqrt{3}$ and $x = -1-3$	• •	= 2-2\sqrt{3}		All correct and paired	A1
						(6)

	Question 6 Notes				
6. (d)	Note	Condone $y = 2 \pm \sqrt{12}$ for the 2nd A1 mark.			
	Note	Do not allow $(-1+\sqrt{3}, 2+\sqrt{12}), (-1-\sqrt{3}, 2-\sqrt{12})$ for the final A mark.			
	Note	Writing $x = -1 \pm \sqrt{3}$, $y = 2 \pm 2\sqrt{3}$ without any evidence of the correct coordinate pairings is			
		final A0			
	Note	Writing coordinates the wrong way round			
		E.g. writing $x = -1 + \sqrt{3}$, $y = 2 + 2\sqrt{3}$ and $x = -1 - \sqrt{3}$, $y = 2 - 2\sqrt{3}$			
		followed by $(-1+\sqrt{3}, 2-2\sqrt{3}), (-1-\sqrt{3}, 2+2\sqrt{3})$ is final A0			
	Note	Imply the 1 st dM1 mark for <i>writing down</i> the <i>correct</i> roots for <i>their</i> quadratic equation. E.g.			
		• $2x^2 + 4x - 4 = 0$ or $x^2 + 2x - 2 = 0$ or $2x^2 + 4x = 4 \rightarrow x = -1 \pm \sqrt{3}$			
		• $\frac{1}{2}y^2 - 2y - 4 = 0$ or $y^2 - 4y - 8 = 0 \rightarrow y = 2 \pm 2\sqrt{3}$			
	Note	You can imply the 1 st A1, 1 st dM1, 2 nd A1 marks for either			
		• $x(2x+4) = 4$ or $\frac{4}{x} = 2x+4 \rightarrow x = -1 \pm \sqrt{3}$			
		• $\left(\frac{y-4}{2}\right)y = 4$ or $y = 2\left(\frac{4}{y}\right) + 4 \rightarrow y = 2 \pm 2\sqrt{3}$			
		with no intermediate working.			
	Note	You can imply the 1 st A1, 1 st dM1, 2 nd A1, 2 nd dM1 marks for either			
		• $x(2x+4) = 4$ or $\frac{4}{x} = 2x+4 \rightarrow x = -1 \pm \sqrt{3}$ and $y = 2 \pm 2\sqrt{3}$			
		• $\left(\frac{y-4}{2}\right)y = 4$ or $y = 2\left(\frac{4}{y}\right) + 4 \rightarrow y = 2 \pm 2\sqrt{3}$ and $x = -1 \pm \sqrt{3}$			
		with no intermediate working.			
	NJ - 4 -	You can then imply the final A1 mark if they correctly state the correct coordinate pairings.			
	Note	2nd A1: Allow this mark for both correct x coordinates or both correct y coordinates which are in			
		the form $\frac{a \pm b\sqrt{c}}{d}$, where <i>a</i> , <i>b</i> , <i>c</i> and <i>d</i> are simplified integers			

Question Number	Scheme		Notes			
7.	$\mathbf{A} = \begin{pmatrix} 6 & k \\ -3 & -4 \end{pmatrix}, \ k \neq 8; \ \mathbf{A}^2 + 3k$	$\mathbf{A}^{-1} = \begin{pmatrix} 5 & 9 \\ -3 & -5 \end{pmatrix};$	$ \mathbf{H} = \begin{pmatrix} 5 & 9 \\ -3 & -5 \end{pmatrix}; \mathbf{M} = \begin{pmatrix} -\frac{1}{2} & -\sqrt{3} \\ \frac{\sqrt{3}}{2} & -1 \end{pmatrix} $			
(i)(a)	$\det(\mathbf{A}) = 6(-4) - (k)(-3) \left\{ = -24 + 3k \right\}$	which	Correct det(A) which can be un-simplifed or simplifed			
	$\{\mathbf{A}^{-1} =\} = \frac{1}{3k - 24} \begin{pmatrix} -4 & -k \\ 3 & 6 \end{pmatrix}$	$\begin{pmatrix} -4 & -k \\ 3 & 6 \end{pmatrix}$				
	$3k - 24(5 \ 0)$		Correct \mathbf{A}^{-1}			
	(36-3k-6k-4k) ($(36-3k-6k-4k)$	3k $2k$)]	Correct \mathbf{A}^2 which can be		(3)	
(b)	$ \{\mathbf{A}^2 = \} \begin{pmatrix} 36 - 3k & 6k - 4k \\ -18 + 12 & -3k + 16 \end{pmatrix} \begin{cases} = \begin{pmatrix} 36 - 3k \\ -6 \end{pmatrix} \\ \end{bmatrix} $	-3k+16	un-simplifed or simplifed	B1	(4)	
	(36-3k-2k) = 2(-4-4)	k (5 0)			(1)	
(c)	• $\begin{pmatrix} 36-3k & 2k \\ -6 & -3k+16 \end{pmatrix} + \frac{3}{3k-24} \begin{pmatrix} -4 & -k \\ 3 & 6 \end{pmatrix}$					
	• $36-3k - \frac{12}{3k-24} = 5$ • $2k - \frac{9}{3k-24} = -3$ • $-3k - \frac{9}{3k-24} = -3$	$\frac{3k}{3k-24} = 9$				
	• $-6 + \frac{9}{2k} = -3$ • $-3k = -3k$	$+16 + \frac{18}{2L - 24} = -$	-5			
	Either $3k - 24$	<i>3K</i> – 24				
	• attempts to form an equation for (their A	$(A^{2}) + 3$ (their A ⁻¹)	$= \begin{pmatrix} 5 & 9 \\ 2 & 5 \end{pmatrix}$ in k	N/1		
			M1			
	• or attempts to add an element of (their A ²) to the corresponding element of 3(their A ⁻¹) and equates to the corresponding element of the given matrix to form an equation in k					
	$\begin{cases} e.g6 + \frac{9}{3k - 24} = -3 \end{cases} \implies k = 9 \end{cases}$ dependent on the previous M mark Solves their equation to give $k =$					
	$\left(\frac{1}{3k-24} - \frac{1}{3k-24} \right) = \frac{1}{3k-24}$		Final answer of $k = 9$ only			
		(ii)(b) can be marked together			(3)	
		e next page when marking (ii)(a) and (ii)(b)				
(ii)(a)	• $p = \left(-\frac{1}{2}\right)(-1) - \left(-\sqrt{3}\right)\left(\frac{\sqrt{3}}{2}\right) = 2$ • $-p\sin\theta = -\sqrt{3}$, $p\cos\theta = -1$		Attempts $p = \pm \frac{1}{2} \pm \left(\sqrt{3}\right) \left(\frac{\sqrt{3}}{2}\right)$	M1		
	• $-p\sin\theta = -\sqrt{3}, p\cos\theta = -1$ • $p = \sqrt{(\pm\sqrt{3})^2 + (-1)^2} = 2$		or uses a full method of trigonometry to find $p = \dots$			
	$p = \frac{-\sqrt{3}}{-\sin'' 120^{\circ''}} = 2$ or $p = \frac{-\sqrt{3}}{\cos''}$	-1 _ 2	p = 2 only	A1		
	$-\sin^{+}120^{\circ}$ - $\sin^{-}2^{-}$ or p^{-} - \cos^{+}	120°" - 2	<i>p</i> – 2 only	AI		
(b)	$1 \sqrt{3}$				(2)	
	$\cos\theta = -\frac{1}{2}, \sin\theta = \frac{\sqrt{3}}{2}, \tan\theta = -\sqrt{3}$	Uses trigonometry to find an expression or value for θ which is in the range (1.57, 3.14) or				
	E.g. • $\Rightarrow \theta = 120^{\circ}$ (90°, 180°) (-3.14, -4.71) or (-180°, -270°)					
	• $\Rightarrow \theta = 180 - \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) = 120^{\circ}$	120° or -240° or $\frac{2\pi}{3}$ or $-\frac{4\pi}{3}$ or awrt 2.09 or awrt -4.19			_	
	• $\Rightarrow \theta = 180 - \tan^{-1}(\sqrt{3}) = 120^{\circ}$		01 awit 2.09 01 awit -4.19			
					(2) 11	
				I		

		Question 7 Notes						
7. (i)(c)	Note	Give 1 st M1 for $\begin{pmatrix} 36-3k - \frac{12}{3k-24} & 2k - \frac{3k}{3k-24} \\ -6 + \frac{9}{3k-24} & -3k + 16 - \frac{18}{3k-24} \end{pmatrix} = \begin{pmatrix} 5 & 9 \\ -3 & -5 \end{pmatrix}$						
	Note	• $36-3k - \frac{12}{3k-24} = 5 \rightarrow 3k^2 - 55k + 252 = 0 \rightarrow (k-9)(3k-28) = 0 \rightarrow k = 9, \frac{28}{3}$						
		• $2k - \frac{3k}{3k - 24} = 9 \rightarrow k^2 - 13k + 36 = 0 \rightarrow (k - 9)(k - 4) = 0 \rightarrow k = 9, 4$						
		• $-6 + \frac{9}{3k - 24} = -3 \rightarrow k = 9$						
		• $-3k + 16 - \frac{18}{3k - 24} = -5 \rightarrow k^2 - 15k + 54 = 0 \rightarrow (k - 9)(k - 6) = 0 \rightarrow k = 9, 6$						
	Note	Uses a correct element equation in part (c) leading to $k = 9$ is M1 dM1 A1 even if they have followed through an incorrect \mathbf{A}^{-1} in (i)(a) or an incorrect \mathbf{A}^{2} in (ii)(b).						
	Note	Give M0 dM0 A0 for an incorrect method of $36 - 3k - 4 = 5 \Rightarrow k = 9$						
(ii)	Note	$\mathbf{M} = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} 1 & 0\\ 0 & p \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & -\sqrt{3}\\ \frac{\sqrt{3}}{2} & -1 \end{pmatrix} \Rightarrow \begin{pmatrix} \cos\theta & -p\sin\theta\\ \sin\theta & p\cos\theta \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & -\sqrt{3}\\ \frac{\sqrt{3}}{2} & -1 \end{pmatrix}$						
	Note	IMPORTANT NOTE						
		Give (ii)(a) M0A0 (b) M0A0 for a method of						
		$\mathbf{M} = \begin{pmatrix} 1 & 0 \\ 0 & p \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & -\sqrt{3} \\ \frac{\sqrt{3}}{2} & -1 \end{pmatrix} \Rightarrow \begin{pmatrix} \cos\theta & -\sin\theta \\ p\sin\theta & p\cos\theta \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & -\sqrt{3} \\ \frac{\sqrt{3}}{2} & -1 \end{pmatrix}$						
		leading to (ii)(a) $p = \dots$, (ii)(b) $\theta = \dots$						
(ii)(a)	Note	$\det(\mathbf{M}) = \left(-\frac{1}{2}\right)\left(-1\right) - \left(-\sqrt{3}\right)\left(\frac{\sqrt{3}}{2}\right) = 2 \text{ followed by } p = \sqrt{2} \text{ is M0 A0}$						
	Note	$p = \det(\mathbf{M}) = \left(-\frac{1}{2}\right)\left(-1\right) - \left(-\sqrt{3}\right)\left(\frac{\sqrt{3}}{2}\right) = 2$ is M1 A1						
	Note	$p = \frac{\sqrt{(\pm\sqrt{3})^2 + (-1)^2}}{\sqrt{\left(-\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2}} = 2 \text{ is M1 A1}$						

Question Number	Scheme		Notes		Marks
8.	(i) $u_1 = 3$, $u_{n+1} = u_n + 3n - 2$, $u_n = \frac{3}{2}n^2 - \frac{7}{2}n + 5$	(ii) $f(n) = 3^{2n+3} + 40n - 27$ is divisible by 64			
(i)	$n=1, \ u_1 = \frac{3}{2} - \frac{7}{2} + 5 = 3$	Uses $u_n = \frac{3}{2}n^2 - \frac{7}{2}n + 5$ to show that $u_1 = 3$			B1
	(Assume the result is true for $n = k$)				
	$\left\{u_{k+1} = u_k + 3k - 2 \Longrightarrow\right\}$			+1 by attempting to substitute	
	$u_{k+1} = \frac{3}{2}k^2 - \frac{7}{2}k + 5 + 3k - 2 \left\{ = \frac{3}{2}k^2 - \frac{1}{2}k + 3 \right\}$		$u_k = \frac{3}{2}k^2 - \frac{7}{2}k$	+5 into $u_{k+1} = u_k + 3k - 2$. Condone one slip.	M1
	3		depende	ent on the previous M mark.	
	$= \frac{5}{2}(k+1)^2 - 3k - \frac{5}{2} - \frac{1}{2}k + 3$		_	write u_{k+1} in terms of $(k+1)$	dM1
	$= \frac{3}{2}(k+1)^2 - \frac{7}{2}k + \frac{3}{2}$ $= \frac{3}{2}(k+1)^2 - \frac{7}{2}(k+1) + 5$				
	$= \frac{3}{2}(k+1)^2 - \frac{7}{2}(k+1) + 5$	Uses	algebra to ach	ieve this result with no errors	A1
	If the result is true for $n = k$, then it is true for	r n =	k+1. As the r	result has been shown to be	A 1
	true for $n = 1$, then the r	esult <u>i</u>	s true for all <i>n</i>	$(\in \mathbb{Z}^{+})$	A1 cso
					(5)
(ii)	$f(1) = 3^5 + 40 - 27 = 256$			f(1) = 256 is the minimum	B1
Way 1	$f(k+1) - f(k) = (3^{2(k+1)+3} + 40(k+1) - 27) - (3^{2(k+1)+3} + 20(k+1) - 20) - (3^{2(k+1)+3} + 20(k+1) - 20) - (3^{2(k+1)+3} + 20(k+1) - 20) - (3^{2(k+1)+3} + 20) - (3^{2(k+1)+3} - (3^{2(k+1)+3} + 20) - (3^{2(k+1)+3} - (3^{2(k+1)+3} + 20) - (3^{2(k+1)+3} - (3^{2(k+1)+3} - (3^{2(k+1)+3} - (3^{2(k+1)+3} - (3^{2(k+1)+3} - (3^{2(k+1)+3} - (3^{2(k+$	$3^{2k+3} +$	-40k - 27)	Attempts $f(k+1) - f(k)$	M1
	$f(k+1) - f(k) = 8(3^{2k+3}) + 40$				
	$= 8(3^{2k+3} + 40k - 27) - 64(5k - 4)$			$8(3^{2k+3} + 40k - 27)$ or $8f(k)$	A1
	or = $8(3^{2k+3} + 40k - 27) - 320k + 256$		-	-64(5k-4) or $-320k+256$	A1
	f(k+1) = 8f(k) - 64(5k-4) + f(k) or f(k+1) = 8f(k) - 320k + 256 + f(k) or f(k+1) = 9(3 ^{2k+3} + 40k - 27) - 320k + 256	dependent on at least one of the previous accuracy marks being awarded. Makes $f(k+1)$ the subject and expresses it in terms of $f(k)$ on $(2^{2k+3} + 40k - 27)$		racy marks being awarded.	dM1
	i	true for $n = k + 1$, As the result has been shown to be n the result is true for all $n \ (\in \mathbb{Z}^+)$			
					(6)
(ii)	$f(1) = 3^5 + 40 - 27 = 256$			f(1) = 256 is the minimum	B1
Way 2	$f(k+1) = 3^{2(k+1)+3} + 40(k+1) - 27$			Attempts $f(k+1)$	M1
	$f(k+1) = 9(3^{2k+3}) + 40k + 13$				
	$= 9(3^{2k+3} + 40k - 27) - 64(5k - 4)$			$9(3^{2k+3}+40k-27)$ or $9f(k)$	A1
	or = $9(3^{2k+3} + 40k - 27) - 320k + 256$		-	-64(5k-4) or $-320k+256$	A1
	f(k+1) = 9f(k) - 64(5k-4) or f(k+1) = 9f(k) - 320k + 256 or f(k+1) = 9(3 ^{2k+3} + 40k - 27) - 320k + 256	N	accu Takes $f(k+1)$	at least one of the previous tracy marks being awarded. the subject and expresses it in of $f(k)$ or $(3^{2k+3} + 40k - 27)$	dM1
	If the result is true for $n = k$, then it is true for $n = k + 1$. As the result has been shown to be				
	<u>true for $n = 1$</u> , then the result is true for all $n \in \mathbb{Z}^+$)			A1 cso	
					11

Question Number		Scheme			Notes	Marks
8.		(ii) $f(n) = 3^{2n+3} + 40n - 27$ is divisible by 64				
(ii)	General Method: Using $f(k+1) - mf(k)$; where <i>m</i> is an integer					
Way 3	$f(1) = 3^5 + 40 - 27 = 256$				f(1) = 256 is the minimum	B1
	f(k+1) -	$mf(k) = (3^{2(k+1)+3} + 40(k+1) - 27) - mk$	$n(3^{2k+3} +$	-40k - 27)	Attempts $f(k+1) - mf(k)$	M1
	$f(k+1) - mf(k) = (9 - m)(3^{2k+3}) + 40k(1 - m) + (13 + 27m)$					
	= (9	$(-m)(3^{2k+3}+40k-27)-64(5k-4)$		$(9-m)(3^{2k+1})$	$x^{-3} + 40k - 27$) or $(9 - m)f(k)$	A1
	or = (9	$(-m)(3^{2k+3}+40k-27) - 320k+256$		_	64(5k-4) or $-320k+256$	A1
		f(k) = (9-m)f(k) - 64(5k-4) + mf(k) f(k) = (9-m)f(k) - 320k + 256 + mf(k)		acculate ac	at least one of the previous racy marks being awarded.) the subject and expresses it of $f(k)$ or $(3^{2k+3} + 40k - 27)$	dM1
	If the r	result is true for $n = k$, then it is true for	<i>n</i> = <i>k</i> +	1, As the re	sult has been shown to be	A1 cso
		true for $n = 1$, then the result	t is <u>is t</u>	rue for all <i>n</i> ($(\in \mathbb{Z}^+)$	A1 CSU
(ii)		General Method: Us	sing f(<i>l</i>	(k + 1) - mf(k))	
Way 4		$f(1) = 3^5 + 40 - 27 = 256$			f(1) = 256 is the minimum	B1
	f(k+1) -	$mf(k) = (3^{2(k+1)+3} + 40(k+1) - 27) - mk$	$u(3^{2k+3} +$	-40k - 27)	Attempts $f(k+1) - mf(k)$	M1
	f(k+1) -	$mf(k) = (9-m)(3^{2k+3}) + 40k(1-m) + 6k(1-m)$	(13+27)	7 <i>m</i>)		
	m – _ 55	$\Rightarrow f(k+1) + 55f(k) = 64(3^{2k+3}) - 224$	$40k \pm 1$	172	$m = -55$ and $64(3^{2k+3})$	A1
	$m = -55 \implies 1(k+1) + 551(k) = 64(5) - 2240k$			m = -55 and -2240k + 1472		A1
	$f(k+1) = 64(3^{2k+3}) - 2240k + 1472 - 55f(k)$ or $f(k+1) = 64(3^{2k+3}) - 64(35k - 23) - 55f(k)$			dependent on at least one of the previous accuracy marks being awarded. Makes f(k + 1) the subject		dM1
	and expresses it in terms of $f(k)$					
	If the r	result is true for $n = k$, then it is true for $n = k$.	n = k + 1	1, As the re	sult has been shown to be	A1 cso
		true for $n = 1$, then the resu	ılt <u>is tru</u>	ue for all n (e	\mathbb{Z}^+)	111 050
		Que	estion 8	3 Notes		
(i) & (ii)	Note	NoteFinal A1 for parts (i) and (ii) is dependent on all previous marks being scored in that part.It is gained by candidates conveying the ideas of all four underlined pointseither at the end of their solution or as a narrative in their solution.				
(i)	Note	Moving from either $u_{k+1} = \frac{3}{2}k^2 - \frac{7}{2}k$				
	to $u_{k+1} = \frac{3}{2}(k+1)^2 - \frac{7}{2}(k+1) + 5$ with no intermediate stage involving either					
		• writing u_{k+1} as a function of $(k + \frac{3}{2})^2$	-	7, 7	-	
	• or writing u_{k+1} as $u_{k+1} = \frac{3}{2}k^2 + 3k + \frac{3}{2} - \frac{7}{2}k - \frac{7}{2} + 5$					
	is dM1A0A0 Note Some candidates will write down					
	$u_{k+1} = \frac{3}{2}k^2 - \frac{7}{2}k + 5 + 3k - 2 \text{ (give 1st M1) and simplify this to } u_{k+1} = \frac{3}{2}k^2 - \frac{1}{2}k + 3$					
	They will then write $u_{k+1} = \frac{3}{2}(k+1)^2 - \frac{7}{2}(k+1) + 5$ (give 2 nd M1) and use algebra					how that
$u_{k+1} = \frac{3}{2}(k+1)^2 - \frac{7}{2}(k+1) + 5 = \frac{3}{2}(k^2 + 2k + 1) - \frac{7}{2}k - \frac{7}{2} + \frac{1}{2}k - \frac{7}{2}k - \frac{7}{2$					$-\frac{7}{2}+5 = \frac{3}{2}k^2 - \frac{1}{2}k + 3$ (give	e 1 st A1)

	Question 8 Notes Continued								
8. (ii)	Note	Note Some candidates may set $f(k) = 64M$ and so may prove the following general result							
		• $\{f(k+1) = 9f(k) - 64(5k-4)\} \Rightarrow f(k+1) = 576M - 64(5k-4)$							
		• { $f(k+1) = 9f(k) - 320k + 256$ } $\Rightarrow f(k+1) = 576M - 320k + 256$							
	Note	$f(n) = 3^{2n+3} + 40n - 27$ can be rewritten as either f	f(n) =	$(27(3^{2n}) + 40n - 27)$					
		or $f(n) = 27(9^n) + 40n - 27$							
	Note	In part (ii), Way 4 there are many alternatives where	e cand	idates focus on isolating					
		$\beta(3^{2k+3})$ where β is a multiple of 64. Listed below	w are	some alternative results:					
		• $f(k+1) = 128(3^{2k+3}) - 119f(k) + 4800k - 3$							
		• $f(k+1) = -64(3^{2k+3}) + 73f(k) - 2880k + 1$	1984						
		See below for how these are derived.							
8. (ii)		(ii) $f(n) = 3^{2n+3} + 40n - 27$ is	divisi	ble by 64					
		The A1A1dM1 marks for Alternatives	using	f(k+1) - mf(k)					
Way 4.1		$= 9(3^{2k+3}) + 40k + 13$							
	=	$= 128(3^{2k+3}) - 119(3^{2k+3}) + 40k + 13$							
	_	$= 128(3^{2k+3}) - 119[3^{2k+3} + 40k - 27] + 4800k - 3200$		$m = -119$ and $128(3^{2k+3})$	A1				
			<i>m</i> =	=-119 and $4800k - 3200$	A1				
	、 、	$1) = 128(3^{2k+3}) - 119f(k) + 4800k - 3200$	as before		dM1				
	or $f(k + $	$1) = 128(3^{2k+3}) - 119[3^{2k+3} + 40k - 27] + 4800k - 320$	0	as before	ulvi i				
Way 4.2	$f(k+1) = 9(3^{2k+3}) + 40k + 13$								
	$= -64(3^{2k+3}) + 73(3^{2k+3}) + 40k + 13$								
	_	$= -64(3^{2k+3}) + 73[3^{2k+3} + 40k - 27] - 2880k + 1984$		$m = 73$ and $-64(3^{2k+3})$	A1				
				=73 and $-2880k + 1984$	A1				
	f (<i>k</i> +	$f(k+1) = -64(3^{2k+3}) + 73f(k) - 2880k + 1984$		as before	dM1				
	or $f(k +$	$1) = -64(3^{2k+3}) + 73[3^{2k+3} + 40k - 27] - 2880k + 198$	4	as before					