Pearson

Mark Scheme (Results)

Summer 2017

Pearson Edexcel International A Level in Further Pure Mathematics F1 (WFM01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017
Publications Code WFM01_01_1706_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- o.e. - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \square or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$, leading to $\mathrm{x}=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $\mathrm{x}=\ldots$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, q \neq 0$, leading to $\mathrm{x}=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$

2. Integration

Power of at least one term increased by 1. $\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

Method mark for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

May 2017
WFM01 Further Pure Mathematics F1 Mark Scheme

Question Number	Scheme		Notes		Marks
3.	Required to prove by induction the resu	result ${ }_{r=1}^{n} \overline{r(r+1)}$	$\frac{2}{+1)(r+2)}=\frac{1}{2}$	$\frac{1}{(n+1)(n+2)}, n \rightarrow$	
Way 1	$n=1: \text { LHS }=\frac{1}{3}, \text { RHS }=\frac{1}{2} \quad \frac{1}{(2)(3)}=\frac{1}{3}$	$=\frac{1}{3} \quad$ and	shows either RH $\mathrm{HS}=\frac{1}{2} \quad \frac{1}{(2)(3)}=$	$\begin{aligned} & \text { Shows or states LHS }=\frac{1}{3} \\ & \text { SS }=\frac{1}{2} \quad \frac{1}{(1+1)(2+1)}=\frac{1}{3} \\ & =\frac{1}{3} \text { or RHS }=\frac{1}{2} \quad \frac{1}{6}=\frac{1}{3} \end{aligned}$	B1
	(Assume the result is true for $n=k$)				
	${ }_{r=1}^{k+1} \frac{2}{r(r+1)(r+2)}=\frac{1}{2} \quad \frac{1}{(k+1)(k+2)}+\frac{2}{(k+1)(k+1+1)(k+1+2)}$			Adds the $(k+1)^{\text {th }}$ term to the sum of k terms	M1
	$=\frac{1}{2} \frac{1}{(k+1)(k+2)}+\frac{2}{(k+1)(k+2)(k+3)}$				
	$=\frac{1}{2} \quad \frac{(k+3)}{(k+1)(k+2)(k+3)}+\frac{2}{(k+1)(k+2)(k+3)}$ or $=\frac{1}{2}\left(\frac{(k+3) 2}{(k+1)(k+2)(k+3)}\right)$		dependent on the previous M mark Makes $(k+1)(k+2)(k+3)$ a common denominator for their second and third fractions		dM1
	$=\frac{1}{2} \quad \frac{1}{(k+2)(k+3)}$	Obtains $\frac{1}{2} \frac{1}{(k+2)(k+3)}$ or $\frac{1}{2} \frac{1}{(k+1+1)(k+1+2)}$			A1
	If the result is true for $n=k$, then it is true for $n=k+1$. As the result has been shown to be true for $n=1$, then the result is true for all n (${ }^{\rightarrow}$)				A1 cso
	Final A1 is dependent on all previous marks being scored in that part. It is gained by candidates conveying the ideas of all four underlined points either at the end of their solution or as a narrative in their solution.				(5)
					5
Way 2	The M1dM1A1 marks for Alternative Way 2				
	${ }_{r=1}^{k+1} \frac{2}{r(r+1)(r+2)}=\frac{1}{2} \quad \frac{1}{(k+1)(k+2)}+\frac{2}{(k+1)(k+1+1)(k+1+2)}$			Adds the $(k+1)^{\text {th }}$ term to the sum of k terms	M1
	$=\frac{(k+1)(k+2)(k+3) 2(k+3)+2(2)}{2(k+1)(k+2)(k+3)}$		dependent on the previous M mark Makes $2(k+1)(k+2)(k+3)$ a common denominator for their three fractions		dM1
	$=\frac{k^{3}+6 k^{2}+9 k+4}{2(k+1)(k+2)(k+3)}=\frac{(k+1)\left(k^{2}+5 k+4\right)}{2(k+1)(k+2)(k+3)}=\frac{k^{2}+5 k+4}{2(k+2)(k+3)}=\frac{(k+2)(k+3) 2}{2(k+2)(k+3)}$				
	$=\frac{1}{2} \frac{1}{(k+2)(k+3)}$	Obtains $\frac{1}{2} \frac{1}{(k+2)(k+3)}$ or $\frac{1}{2} \frac{1}{(k+1+1)(k+1+2)}$ by correct solution only			A1

3.	Question 3 Notes								
	Note	LHS $=$ RHS by itself or LHS $=$ RHS $=\frac{1}{3}$ is not sufficient for the $1^{\text {st }} \mathrm{B} 1$ mark.							
	Note Way 2	The $1^{\text {st }} \mathrm{A} 1$ can be obtained by e.g. using algebra to show that ${ }_{r=1}^{k+1} \frac{2}{r(r+1)(r+2)}$ $\frac{\left(k^{2}+5 k+4\right)}{2(k+2)(k+3)}$ and by using algebra to show that $\frac{1}{2} \frac{1}{(k+2)(k+3)}$ also gives							es $\frac{\left.2^{2}+5 k+4\right)}{+2)(k+3)}$
	Note	Moving from $\frac{1}{2} \frac{1}{(k+1)(k+2)}+\frac{2}{(k+1)(k+2)(k+3)}$ to $\frac{1}{2} \quad \frac{1}{(k+2)(k+3)}$ with no intermediate working is $2^{\text {nd }} \mathrm{M} 01^{\text {st }} \mathrm{A} 02^{\text {nd }} \mathrm{A} 0$.							
Way 3	The M1dM1A1 marks for Alternative Way 3								
	${ }_{r=1}^{k+1} \frac{2}{r(r+1)(r+2)}=\frac{1}{2} \quad \frac{1}{(k+1)(k+2)}+\frac{2}{(k+1)(k+1+1)(k+1+2)}$						Adds the to the su	$(k+1)^{\text {th }}$ term of k terms	M1
	$=\frac{1}{2} \quad \frac{}{(k+1}$	$\frac{1}{+1)(k+2)}+\frac{1}{(k+1)(k+2)}$	$\frac{1}{(k+2)(k+3}$		dependent on the previous M mark This step must be seen in Way 3				dM1
	$=\frac{1}{2} \quad$	$\frac{1}{(k+2)(k+3)}$	Obtains $\frac{1}{2} \frac{1}{(k+2)(k+3)}$ or $\frac{1}{2} \frac{1}{(k+1+1)(k+1+2)} \begin{array}{r}\text { by correct solution only }\end{array}$						A1

Question Number	Scheme	Notes		Marks
4. (a) Way 1	$\left\{x=4 t, y=\frac{4}{t} \Rightarrow\right\} 3\left(\frac{4}{t}\right) \quad 2(4 t)=10$	Substitutes $x=4 t$ and $y=\frac{4}{t}$ into the printed equation to obtain an equation in t only		M1
	$\begin{array}{cc} 8 t^{2}+10 t \quad 12=0 \text { or } 4 t^{2}+5 t \quad 6=0 \\ & (\text { can be implied }) \end{array}$	A correct 3 term quadratic Note: E.g. $12 \quad 8 t^{2}=10 t, 8 t^{2}+10 t \quad 12\{=0\}$ or $8 t^{2}+10 t=12$ are acceptable for this mark		A1
	$\begin{array}{ll} \left.\quad \begin{array}{ll} 8 t & 6 \end{array}\right)(t+2)=0 & t=\ldots \\ \text { or }\left(\begin{array}{ll} 4 t & 3 \end{array}\right)(2 t+4)=0 & t=\ldots \\ \text { or }\left(\begin{array}{ll} 4 t & 3 \end{array}\right)(t+2)=0 & t=\ldots \end{array}$	dependent on the previous M mark Correct method (e.g. factorising, completing the square or applying the quadratic formula) of solving a 3 TQ to find $t=\ldots$		dM1
	- $x=4\left(\frac{3}{4}\right)=3$ and $y=\frac{4}{\left(\frac{3}{4}\right)}=\frac{16}{3}$ - $x=4(2)=8$ and $y=\frac{4}{(2)}=2$	dependent on both the previous M marks Correct substitution at least one of their values for t into the given parametric equations and obtains two sets of corresponding values for $x=\ldots$ and $y=\ldots$		ddM1
	$A\left(3, \frac{16}{3}\right), B(8,2)$ or $A: x=3, y=\frac{16}{3}$ and $B: x=8, y=2$ ($\begin{array}{r}\text { Identifies the correct } \\ \text { coordinates for } A \text { and } B\end{array}$			A1 cao
				(5)
(a) Way 2	$\left.\begin{array}{l\|l}x\left(\frac{10+2 x}{3}\right)=16 & \left(\frac{3 y}{2} 10\right. \\ \hline\end{array}\right) y=16$	Either substitutes their rearranged $3 y \quad 2 x=10$ into $x y=k$ or substitutes either $y=\frac{k}{x} \text { or } x=\frac{k}{y}, k \quad 0, \text { into } 3 y \quad 2 x=10$ to form an equation in either x only or y only		M1
	$\left.\begin{array}{lll} 2 x^{2}+10 x & 48=0 \text { or } x^{2}+5 x & 24=0 \text { or } \\ \frac{2}{3} x^{2}+\frac{10}{3} x & 16=0 \text { or } \frac{3}{2} y^{2} & 5 y \end{array} \quad 16=00 \text { (can be implied }\right) \text { }$	A correct 3 term quadratic Note: $10 x+2 x^{2}=48,3 y^{2} \quad 10 y=32$ or $x^{2}+5 x \quad 24\{=0\}$ are acceptable for this mark		A1
		dependent on the previous M mark Correct method (e.g. factorising, completing the square or applying the quadratic formula) of solving a 3TQ to find either $x=\ldots$ or $y=\ldots$		dM1
	E.g. $\quad x=3 \quad y=\frac{16}{3}$ dependent on both the previous M marks. Correct substitution of at least one of their values for x or y into either $3 y \quad 2 x=10$ or $x=8 \quad y=\frac{16}{8}=2$ their rearranged $3 y \quad 2 x=10$ or $y=\frac{k}{x}$ or $x=\frac{k}{y}, k \quad 0$, and obtains two sets of corresponding values for $x=\ldots$ and $y=\ldots$			ddM1
	$A\left(3, \frac{16}{3}\right), B(8,2)$ or $A: x=3, y=\frac{16}{3}$ and $B: x=8, y=2$ ($\begin{array}{r}\text { Identifies the correct } \\ \text { coordinates for } A \text { and } B\end{array}$			A1 cao
				(5)
(b)	$\left(\frac{3+(8)}{2}, \frac{\frac{16}{3}+(2)}{2}\right) ;=\left(\frac{5}{2}, \frac{5}{3}\right)$	Uses their $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ from part (a) to apply $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$ o.e. Correct answer		M1;
				A1
				(2)
				7

	Question 4 Notes	
4. (a)	SC	If the two previous M marks have been gained then award Special Case ddM1 for finding their correct points by writing either $x=3, y=\frac{16}{3}$ or $x=8, y=2$ or $\left(3, \frac{16}{3}\right)$ or $(8,2)$
	Note	A decimal answer of e.g. $A(3,5.33), B(8,2)$ (without a correct exact answer) is $2^{\text {nd }} \mathrm{A} 0$
	Note	Writing coordinates the wrong way round E.g. writing $x=3, y=\frac{16}{3}$ and $x=8, y=2$ followed by $A\left(\frac{16}{3}, 3\right), B(8,2)$ is $2^{\text {nd }} \mathrm{A} 0$
	Note	Imply the dM 1 mark for writing down the correct roots for their quadratic equation. E.g. - $2 x^{2}+10 x \quad 48=0$ or $x^{2}+5 x \quad 24=0$ or $\frac{2}{3} x^{2}+\frac{10}{3} x=16 \rightarrow x=3,8$ - $\frac{3}{2} y^{2} \quad 5 y \quad 16=0$ or $3 y^{2} \quad 10 y \quad 32=0 \rightarrow y=\frac{16}{3}, 2$ - $8 t^{2}+10 t=12$ or $4 t^{2}+5 t \quad 6=0 \rightarrow t=\frac{3}{4}, \quad 2$
	Note	For example, give dM0 for - $8 t^{2}+10 t=12$ or $4 t^{2}+5 t \quad 6=0 \rightarrow t=\frac{1}{4}, \quad 2$ [incorrect solution] with no intermediate working.
	Note	You can also imply the $1^{\text {st }} \mathrm{A} 1 \mathrm{dM} 1$ marks for either - $x\left(\frac{10+2 x}{3}\right)=16$ or $3\left(\frac{16}{x}\right) \quad 2 x=10 \rightarrow x=3,8$ - $\left(\frac{3 y 10}{2}\right) y=16$ or $3 y \quad 2\left(\frac{16}{y}\right)=10 \rightarrow y=\frac{16}{3}, 2$ - $3\left(\frac{4}{t}\right) \quad 2(4 t)=10 \rightarrow x=3,8$ - $3\left(\frac{4}{t}\right) \quad 2(4 t)=10 \rightarrow y=\frac{16}{3}, 2$ with no intermediate working.
	Note	You can imply the $1^{\text {st }} \mathrm{A} 1 \mathrm{dM} 1$ ddM1 marks for either - $x\left(\frac{10+2 x}{3}\right)=16$ or $3\left(\frac{16}{x}\right) \quad 2 x=10 \rightarrow x=3,8$ and $y=\frac{16}{3}, \quad 2$ - $3\left(\frac{4}{t}\right) \quad 2(4 t)=10 \rightarrow x=3,8$ and $y=\frac{16}{3}, 2$ with no intermediate working. You can then imply the final A1 mark if they correctly identify the correct pairs of values or coordinates which relate to the point A and the point B.
	Note	Give $2^{\text {nd }} \mathrm{A} 0$ for a final answer of both $A\left(3, \frac{16}{3}\right), B(8,2)$ and $A(8,2), B\left(3, \frac{16}{3}\right)$,
(b)	Note	A decimal answer of e.g. ($2.5,1.67$) (without a correct exact answer) is A0
	Note	Allow A1 for $\left(\frac{5}{2}, \frac{10}{6}\right)$ or $\left(2 \frac{1}{2}, 1 \frac{2}{3}\right)$ or exact equivalent.

		Question 5 Notes Continued
5. (b)	Note	Incorrect differentiation followed by their estimate of with no evidence of applying the NR formula is final dM0A0.
	Final dM1	This mark can be implied by applying at least one correct value of either f(2) or f (2) in $2 \frac{f(2)}{f(2)}$. So just $2 \frac{f(2)}{f(2)}$ with an incorrect answer and no other evidence scores final dM0A0.
	Note	You can imply the M1A1A1 marks for algebraic differentiation for either - $\mathrm{f}(2)=\frac{7}{2}(2)^{\frac{3}{2}} 5(2)^{4}$ - f (2)applied correctly in $\alpha \simeq 2-\frac{30-7(2)^{-\frac{1}{2}}-(2)^{5}}{-\frac{7}{2}(2)^{-\frac{3}{2}}-5(2)^{4}}$
	Note	Differentiating INCORRECTLY to give $\mathrm{f}(x)=\frac{7}{2} x^{2} \quad 5 x^{4}$ leads to $\alpha \simeq 2-\frac{2.949747468 \ldots}{-81.75}=2.036082538 \ldots=2.04(2 \mathrm{dp})$ This response should be awarded M1A1A0M1A0

Question Number	Scheme	Notes	Marks
6. (a)	${ }_{r=1}^{n} r^{2}(r+1)={ }_{r=1}^{n} r^{3}+{ }_{r=1}^{n} r^{2}$	$\left\{\right.$ Note: Let $\mathrm{f}(n)=\frac{1}{12} n(n+1)(n+2)(3 n+1)$ or their answer to part (a).\}	
	$=\frac{1}{4} n^{2}(n+1)^{2}+\frac{1}{6} n(n+1)(2 n+1)$	Attempts to expand $r^{2}(r+1)$ and attempts to substitute at least one correct standard formula into their resulting expression.	M1
		Correct expression (or equivalent)	A1
	$=\frac{1}{12} n(n+1)[3 n(n+1)+2(2 n+1)] \quad$ At	dependent on the previous M mark Attempt to factorise at least $n(n+1)$ having attempted to substitute both standard formulae.	dM1
	$=\frac{1}{12} n(n+1)\left[3 n^{2}+7 n+2\right]$	\{this step does not have to be written\}	
	$=\frac{1}{12} n(n+1)(n+2)(3 n+1)$	Correct completion with no errors. Note: $a=12, b=1$	A1 cso
			(4)
$\begin{gathered} (\mathrm{b}) \\ \text { Way } 1 \end{gathered}$	$\begin{aligned} & \left\{\sum_{r=25}^{49} r^{2}(r+1)\right\} \\ & =\left(\frac{1}{12}(49)(50)(51)(148)\right) \quad\left(\frac{1}{12}(24)(25)(26)(73)\right) \\ & \{=1541050 \quad 94900=1446150\} \end{aligned}$	Attempts to find either $f(49) \quad f(24)$ or $f(49) \quad f(25)$. This mark can be implied.	M1
		Correct numerical expression for $f(49) \quad f(24)$ which can be simplified or un-simplified. Note: This mark can be implied by seeing 1446150	A1
	$\begin{aligned} & \left\{\sum_{r=25}^{49}\left(r^{2}(r+1)+2\right)\right\}^{\prime 2} \\ & =" 1446150 "+25(2) ;=1446200 \end{aligned}$	Adds 25(2) or equivalent to their ${ }_{r=25}^{r^{2}(r+1)}$ or clear evidence that ${ }_{r=25}^{49} 2=2(49)$ $2(24)$ or 50	M1
		1446200	A1 cao
			(4)
(b) Way 2	$\left.\begin{array}{rl} \left\{\sum_{r=25}^{49}\left(r^{2}(r+1)+2\right)\right\} & =\left(\underline{\underline{\frac{1}{12}}(49)(50)(51)(148)}+\underline{2(49)}\right) \quad(\underline{\underline{1}}(24)(25)(26)(73) \end{array}+\underline{2(24)}\right)$		
	Attempts to find either $\underline{\underline{f(49)}} \mathrm{f}(24)$ or $\underline{\underline{f(49)} \mathrm{f}(25)}$		M1
	Correct numerical expression for $f(49) \quad f(24)$ which can be simplified or un-simplified. Note: This mark can be implied by ($\underline{\underline{1541050}+\ldots) \quad(\underline{\underline{94900}}+\ldots) \text { or } 154114894948) ~}$		A1
	Adds 50 or equivalent to their ${ }_{r=25}^{49} r^{2}(r+1)$ or clear evidence that ${ }_{r=25}^{49} 2=2(49) \quad 2(24)$ or 50 Note: This mark can be implied by ($\ldots+2(49)$) (... $+2(24))$ or 154114894948		M1
	1446200		A1 cao
			(4)
			8

	Question 6 Notes Continued	
6. (b)	Note	Give $1^{\text {st }} \mathrm{M} 11^{\text {st }}$ A0 for applying $\mathrm{f}(49) \quad \mathrm{f}(25)$. i.e. $1541050 \quad 111150\{=1429900\}$
	Note	You cannot follow through their incorrect answer from part (a) for the $1^{\text {st }} \mathrm{A} 1$ mark.
	Note	$\begin{aligned} & \text { Give M1A0M1A0 for applying }[\mathrm{f}(49)+2(49)][\mathrm{f}(25)+2(24)] \\ & \text { i.e. } 1541148 \quad 111198\{=1429950\} \end{aligned}$
	Note	$\begin{aligned} & \text { Give M1A0M0A0 for applying }[\mathrm{f}(49)+2(49)] \quad[\mathrm{f}(25)+2(25)] \\ & \text { i.e. } 1541148 \quad 111200\{=1429948\} \end{aligned}$
	Note	Give $1^{\text {st }} \mathrm{M} 01^{\text {st }} \mathrm{A} 0$ for applying (49) ${ }^{2}(50) \quad(24)^{2}(25)=120050 \quad 14400=105650$
	Note	Give $1^{\text {st }} \mathrm{M} 01^{\text {st }} \mathrm{A} 0$ for applying $(49)^{2}(50) \quad(25)^{2}(26)=120050 \quad 16250=103800$
	Note	Give M0A0M0A0 for listing individual terms. $\text { e.g. } 16250+18252+\ldots+112896+120050=1446200$
	Note	Give $2^{\text {nd }} \mathrm{M} 0$ for lack of bracketing in $\frac{1}{12}(49)(50)(51)(148)+2(49) \quad \frac{1}{12}(24)(25)(26)(73)+2(24) \text { unless recovered }$
	Note	Give M0A0M0A0 for writing down 1446200 without any working.
	Note	Applying f(49) $\mathrm{f}(24)$ for $\frac{1}{4} n(n+1)(n+2)(3 n+1)$ is $4623150 \quad 284700=4338450$ is $1^{\text {st }} \mathrm{M} 11^{\text {st }} \mathrm{A} 0$

	Question 9 Notes		
9. (a)	Note	M1 can be implied by awrt 0.45 or a truncated 0.44	
	Note	Give A0 for $0.4472 \ldots$ without reference to $\frac{\sqrt{5}}{5}$ or $\frac{1}{\sqrt{5}}$ or $\sqrt{\frac{1}{5}}$	
	Note	Give B0 for 1.11 followed by a final answer of 1.11	
(b)	Note	Be aware that $\frac{1}{\left(\frac{1}{5} \frac{2}{5} \mathrm{i}\right)}=1+2 \mathrm{i}$	

