Mark Scheme (Results)
Summer 2016

Pearson Edexcel IAL Further Pure Mathematics 3 (WFM03/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016
Publications Code WFM03_01_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL I AL MATHEMATI CS

General Instructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \square or $\mathrm{d} . .$. The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$, leading to $\mathrm{x}=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $\mathrm{x}=\ldots$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, \quad q \neq 0$, leading to $\mathrm{x}=\ldots$
Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^{n} \rightarrow x^{n-1}$)

2. I ntegration

Power of at least one term increased by 1. $\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.
Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number	Scheme	Notes	Marks
1.	$y=9 \cosh x+3 \sinh x+7 x$		
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=9 \sinh x+3 \cosh x+7$ Co	rect derivative	B1
	$9 \frac{\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)}{2}+3 \frac{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)}{2}+7=0 \quad \mathrm{Re}$	laces $\sinh x$ and $\cosh x$ by the correct onential forms	M1
	Note that the first 2 marks can s $\begin{aligned} & \text { M1: } y=9 \frac{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)}{2}+3 \\ & \text { B1: } \frac{\mathrm{d} y}{\mathrm{~d} x}=9 \frac{\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)}{2}+ \end{aligned}$	sore the other way round: $\begin{aligned} & 3 \frac{\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)}{2}+7 x \\ & +3 \frac{\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)}{2}+7 \end{aligned}$	
	120 ${ }^{2 x}+14 \mathrm{e}^{x}-6=0$ oe $\quad 1$M1 A1:	: Obtains a quadratic in e^{x} Correct quadratic	M1A1
	$\left(3 \mathrm{e}^{x}-1\right)\left(2 \mathrm{e}^{x}+3\right)=0 \Rightarrow \mathrm{e}^{x}=\ldots \quad$ Sol	Solves their quadratic as far as $\mathrm{e}^{x}=\ldots$	M1
	$x=\ln \left(\frac{1}{3}\right)$ cso seen	cso (Allow $-\ln 3) \quad e^{x}=-\frac{3}{2}$ need not be seen. Extra answers, award A0	A1
			(6)
	Alternative		
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=9 \sinh x+3 \cosh x+7 \quad$ Cor	Correct derivative	B1
	$9 \sinh x=-3 \cosh x-7 \Rightarrow 81 \sinh ^{2} x=9 \cosh ^{2} x+42 \cosh x+49$		
	$72 \cosh ^{2} x-42 \cosh x-130=0 \quad$ S	Squares and attempts quadratic in $\cosh x$	M1
	$(3 \cosh x-5)(12 \cosh x+13)=0 \Rightarrow \cosh x=\frac{5}{3}$	- M1: Solves quadratic	M1A1
		A1: Correct value	
	$x=\ln \left(\frac{5}{3} \pm \sqrt{\left(\frac{5}{3}\right)^{2}-1}\right)$	Use of ln form of arcosh	M1
	$x=\ln \left(\frac{1}{3}\right)$	cso (Allow - $\ln 3$)	A1

NB: Ignore any attempts to find the y coordinate

Question Number	Scheme	Notes	Marks
2	$\frac{x^{2}}{25}+\frac{y^{2}}{4}=1, \quad P$		
(a)	$\begin{gathered} \frac{\mathrm{d} x}{\mathrm{~d} \theta}=-5 \sin \theta, \frac{\mathrm{~d} y}{\mathrm{~d} \theta}=2 \cos \theta \\ \text { or } \\ \frac{2 x}{25}+\frac{2 y}{4} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \end{gathered}$	Correct derivatives or correct implicit differentiation	B1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 \cos \theta}{-5 \sin \theta}$	Divides their derivatives correctly or substitutes and rearranges	M1
	$M_{N}=\frac{5 \sin \theta}{2 \cos \theta}$	Correct perpendicular gradient rule	M1
	$y-2 \sin \theta=\frac{5 \sin \theta}{2 \cos \theta}(x-5 \cos \theta)$	Correct straight line method (any complete method) Must use their gradient of the normal.	M1
	$5 x \sin \theta-2 y \cos \theta=21 \sin \theta \cos \theta^{*}$	cso	A1*
			(5)
(b)	At $Q, x=0 \Rightarrow y=-\frac{21}{2} \sin \theta$		B1
	$\begin{gathered} M \text { is }\left(\frac{0+5 \cos \theta}{2}, \frac{2 \sin \theta-\frac{21}{2} \sin \theta}{2}\right) \\ \left(=\left(\frac{5}{2} \cos \theta,-\frac{17}{4} \sin \theta\right)\right) \end{gathered}$	Correct mid-point method for at least one coordinate Can be implied by a correct x coordinate	M1
	L cuts x-axis at $\frac{21}{5} \cos \theta$		B1
	$\begin{aligned} & \text { Area } O P M=O L P+O L M \\ & 121 \end{aligned}$	M1: Correct triangle area method using their coordinates	M1A1
	$\frac{1}{2} \cdot \frac{21}{5} \cos \theta \cdot 2 \sin \theta+\frac{1}{2} \cdot \frac{21}{5} \cos \theta \cdot \frac{1}{4} \sin \theta$	A1: Correct expression	
	$=\frac{105}{16} \sin 2 \theta$	Or $6.5625 \sin 2 \theta$ must be positive	A1(6)
			Total 11
	ALTs for (b)		
1	Using Area OPM		
	See above for B1M1		B1M1
	Area $\triangle O P M=\frac{1}{2}\left\|\begin{array}{cccc}0 & 5 \cos \theta & \frac{5}{2} \cos \theta & 0 \\ 0 & 2 \sin \theta & -\frac{17}{4} \sin \theta & 0\end{array}\right\|$	M1: Correct determinant with their coords, with 2 or 3 points. ${ }_{0}^{0}$ should be at both or neither end. A1: Correct determinant (There are more complicated determinants using the 3 points.)	M1A1

	$=\frac{1}{2}\left(0+5 \sin \theta \cos \theta+0-0+\frac{85}{4} \sin \theta \cos \theta-0\right)$	A1	A1
	$=\frac{105}{4} \sin \theta \cos \theta$		
	$=\frac{105}{16} \sin 2 \theta$		A1
2	Using Area OPQ:		
	At $Q, x=0 \Rightarrow y=-\frac{21}{2} \sin \theta$		B1
	Area $\triangle O P Q=\frac{1}{2} \left\lvert\, \begin{array}{cc}5 \cos \theta & 0 \\ 2 \sin \theta & -\frac{21}{2} \sin \theta\end{array}\right.$	Can be implied by the following line	M1A1
	$=\frac{1}{2} \times \frac{105}{2} \sin \theta \cos \theta$	$O Q$ is base, x coord of P is height	A1
	$=\frac{105}{8} \sin 2 \theta$		
	Area $O P M=\frac{1}{2}$ Area $O P Q$		M1
	$=\frac{105}{16} \sin 2 \theta$		A1
3	At $Q, x=0 \Rightarrow y=-\frac{21}{2} \sin \theta$		B1
	M is $\left(\frac{0+5 \cos \theta}{2}, \frac{2 \sin \theta-\frac{21}{2} \sin \theta}{2}\right) \quad(=$	$\left.\left(\frac{5}{2} \cos \theta,-\frac{17}{4} \sin \theta\right)\right)$	M1
	$O P=\sqrt{4 \sin ^{2} \theta+25 \cos ^{2} \theta}\left(=\sqrt{4+21 \cos ^{2} \theta}\right)$		B1
	$d=\frac{\frac{5}{2} \cos \theta \times \frac{2 \sin \theta}{5 \cos \theta}+\frac{17}{4} \sin \theta}{\sqrt{\frac{4 \sin ^{2} \theta}{25 \cos ^{2} \theta}+1}}=\frac{\frac{21}{4} \sin \theta}{\sqrt{\frac{4+21 \cos ^{2} \theta}{25 \cos ^{2} \theta}}}$		
	$\text { Area }=\frac{1}{2} \times \frac{\frac{21}{4} \sin \theta}{\sqrt{\frac{4+21 \cos ^{2} \theta}{25 \cos ^{2} \theta}}} \times \sqrt{4+21 \cos ^{2} \theta}$		M1A1
	$=\frac{105}{16} \sin 2 \theta$		A1

ALT:	Second M1A1		
	$\int_{\text {arsinh }-1} \frac{\text { ans } 2 x-3=u \text { or } 2 x-3=5 \sinh u}{\sqrt{25 \sinh ^{2} u+25}} 5 \cosh u \mathrm{~d} u=\left[\frac{1}{2} \operatorname{arsinh}\left(\frac{u}{5}\right)\right]_{-5}^{5}$	$\int_{-5}^{5} \frac{1}{2 \sqrt{u^{2}+25}} \mathrm{~d} u=\left[\frac{1}{2} \operatorname{arsinh}\left(\frac{u}{5}\right)\right]$	M1A1

Question Number	Scheme	Notes	Marks
6(a)	$\overrightarrow{A B}=\left(\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right), \overrightarrow{A C}=\left(\begin{array}{r}1 \\ -1 \\ 3\end{array}\right), \overrightarrow{B C}=\left(\begin{array}{c}3 \\ -2 \\ 2\end{array}\right)$	Two correct vectors in Π Can be negatives of those shown	B1
	$\left\|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 1 & 1\end{array}\right\|=\binom{4}{7}$	M1: Attempt cross product of two vectors lying in Π (At least one no. to be correct.)	M1A1
	1 -1 3 1	A1: Correct normal vector	
	$\left(\begin{array}{l}4 \\ 7 \\ 1\end{array}\right) \cdot\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)=4+14+3$	Attempt scalar product with their normal and a point in the plane	dM1
	$4 x+7 y+z=21$	Cao (oe)	A1
	(a) Alternative		
	$\begin{aligned} & a+2 b+3 c=d \\ & -a+3 b+4 c=d \\ & 2 a+b+6 c=d \end{aligned}$	Correct equations	B1
	$a=\frac{4}{21} d, b=\frac{1}{3} d, c=\frac{1}{21} d$	M1: Solve for a, b and c in terms of d A1: Correct equations	M1A1
	$d=21 \Rightarrow a=\ldots, b=\ldots, c=\ldots$	Obtains values for a, b, c and d	M1
	$4 x+7 y+z=21$	Cao (oe)	A1
			(5)
(b)	Alternative: Using $\mathbf{r}=\mathbf{a}+s \mathbf{b}+t \mathbf{c}$ where \mathbf{b} and \mathbf{c} are vectors in Π		
	Two correct vectors in the plane	See main scheme	B1
	$\mathrm{Eg} \mathbf{r}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)+s\left(\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right)+t\left(\begin{array}{c}1 \\ -1 \\ 3\end{array}\right)$		M1
	$\begin{aligned} & x=1-2 s+t \\ & y=2+s-t \\ & z=3+s+3 t \end{aligned}$	Deduce 3 correct equations	A1
	$4 x+7 y+z=21$	$\begin{aligned} & \text { M1: Eliminate } s, t \\ & \text { A1: Cao } \end{aligned}$	M1A1
	AD \square AB \times AC	Attempt suitable triple product	M1
	$=\left(\begin{array}{l}4 \\ 7 \\ 1\end{array}\right) \cdot\left(\begin{array}{c}k-1 \\ 2 \\ 11\end{array}\right)=4 k-4+14+11$		
	$\therefore \frac{1}{6}(4 k+21)=6$	$\text { M1: Set } \frac{1}{6} \text { (their triple product) }=6$	dM1A1
		A1: Correct equation	
	$k=\frac{15}{4}$	Cao (oe)	A1

	(b) Alternative		
	Area $\mathrm{ABC}=\frac{1}{2}\|\overrightarrow{A B}\|\|\overrightarrow{A C}\|=\frac{1}{2} \sqrt{6} \sqrt{11}$	Attempt area $A B C$ and distance between	M1
	$D \text { to } \Pi \text { is } \frac{4 k+28+14-21}{\sqrt{16+49+1}}$	Dand Π	
	$\frac{1}{6} \sqrt{6} \sqrt{11} \frac{4 k+28+14-21}{\sqrt{16+49+1}}=6$	M1: Set $\frac{1}{3}$ (their area x their distance) $=6$	dM1A1
		A1: Correct equation	
	$k=\frac{15}{4}$	Cao (oe)	A1
			(4)
			Total 9

| Question |
| :---: | :---: | :---: | :--- |
| Number | 8.

	(b) Alternative		
	$I_{1}=\int_{0}^{\ln 2} \tanh ^{2} x \mathrm{~d} x=\int_{0}^{\ln 2}\left(1-\operatorname{sech}^{2} x\right) \mathrm{d} x$		B1
	$I_{1}=[x-\tanh x]_{0}^{\ln 2}$	Correct integration	M1
	$I_{2}=I_{1}-\frac{1}{3}\left(\frac{3}{5}\right)^{3}$	Applies the reduction formula once	M1A1
	$I_{1}=\ln 2-\tanh (\ln 2)=\ln 2-\frac{3}{5}$	M1: Uses limits	A1: Correct expression
	$I_{2}=\ln 2-\frac{3}{5}-\frac{1}{3}\left(\frac{3}{5}\right)^{3}$		A1
	$=\ln 2-\frac{84}{125}$		Total 10

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R ORL

