edexcel 쁓

Mark Scheme (Results)
Summer 2016

Pearson Edexcel IAL in Further Pure Mathematics 1 (WFM01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at www.pearson.com/uk

Summer 2016
Publications Code WFM01_01_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- \quad All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL I AL MATHEMATI CS

General Instructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \square or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|$, leading to $x=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|$, leading to $\mathrm{x}=\ldots$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, \quad q \neq 0$, leading to $x=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^{n} \rightarrow x^{n-1}$)

2. I ntegration

Power of at least one term increased by 1. $\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.
Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.
Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

\begin{tabular}{|c|c|c|c|c|}
\hline Question Number \& \& Scheme \& Notes \& Marks \\
\hline \multirow[t]{7}{*}{1.} \& \multicolumn{2}{|l|}{\[
\sum_{r=1}^{n} r\left(r^{2}-3\right)=\sum_{r=1}^{n} r^{3}-3 \sum_{r=1}^{n} r
\]} \& \& \\
\hline \& \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\[
=\frac{1}{4} n^{2}(n+1)^{2}-3\left(\frac{1}{2} n(n+1)\right)
\]}} \& Attempts to expand \(r\left(r^{2}-3\right)\) and attempts to substitute at least one correct standard formula into their resulting expression. \& M1 \\
\hline \& \& \& Correct expression (or equivalent) \& A1 \\
\hline \& \multicolumn{3}{|r|}{\begin{tabular}{r|r}
dependent on the previous M mark
\end{tabular}} \& dM1 \\
\hline \& \& \(=\frac{1}{4} n(n+1)\left[n^{2}+n-6\right]\) \& \{this step does not have to be written] \& \\
\hline \& \& \(=\frac{1}{4} n(n+1)(n+3)(n-2)\) \& Correct completion with no errors \& A1 cso \\
\hline \& \& \& \& (4) \\
\hline \& \& \& \& 4 \\
\hline \& \multicolumn{4}{|c|}{Question 1 Notes} \\
\hline \multirow[t]{5}{*}{1.} \& Note \& \multicolumn{3}{|l|}{Applying eg. \(n=1, n=2, n=3\) to the printed equation without applying the standard formulae to give \(a=1, b=3, c=-2\) or another combination of these numbers is M0A0M0A0.} \\
\hline \& Alt

dM1

A1 \& \multicolumn{3}{|l|}{| Alternative Method: Obtains $\sum_{r=1}^{n} r\left(r^{2}-3\right) \equiv \frac{1}{4} n(n+1)[n(n+1)-6] \equiv \frac{1}{4} n(n+a)(n+b)(n+c)$ |
| :--- |
| So $a=1$. $\quad n=1 \Rightarrow-2=\frac{1}{4}(1)(2)(1+b)(1+c)$ and $n=2 \Rightarrow 0=\frac{1}{4}(2)(3)(2+b)(2+c)$ leading to either $b=-2, c=3$ or $b=3, c=-2$ |
| dependent on the previous M mark. |
| Substitutes in values of n and solves to find $b=\ldots$ and $c=\ldots$ |
| Finds $a=1, b=3, c=-2$ or another combination of these numbers. |}

\hline \& Note \& \multicolumn{3}{|l|}{Using only a method of "proof by induction" scores 0 marks unless there is use of the standard formulae when the first M1 may be scored.}

\hline \& Note \& \multicolumn{3}{|l|}{Allow final dM1A1 for $\frac{1}{4} n^{4}+\frac{1}{2} n^{3}-\frac{5}{4} n^{2}-\frac{3}{2} n \quad$ or $\frac{1}{4} n\left(n^{3}+2 n^{2}-5 n-6\right)$ or $\frac{1}{4}\left(n^{4}+2 n^{3}-5 n^{2}-6 n\right) \rightarrow \frac{1}{4} n(n+1)(n+3)(n-2)$, from no incorrect working.}

\hline \& Note \& \multicolumn{3}{|l|}{Give final A0 for eg. $\frac{1}{4} n(n+1)\left[n^{2}+n-6\right] \rightarrow=\frac{1}{4} n(n+1)(x+3)(x-2)$ unless recovered.}

\hline
\end{tabular}

Question Number		Scheme	Notes	Marks
2.	$P: y^{2}=28$	$8 x$ or $P\left(7 t^{2}, 14 t\right)$		
(a)	$\left(y^{2}=4 a x \Rightarrow a=7\right) \Rightarrow S(7,0)$		Accept $(7,0)$ or $x=7, y=0$ or 7 marked on the x-axis in a sketch	B1
				(1)
(b)	$\left\{A\right.$ and B have x coordinate $\frac{7}{2}$ So $y^{2}=28\left(\frac{7}{2}\right) \Rightarrow y^{2}=98 \Rightarrow y=\ldots$ or $y=\sqrt{(2(7)-3.5)^{2}-(3.5)^{2}}\left\{=\sqrt{(10.5)^{2}-(3.5)^{2}}\right\}$ or $7 t^{2}=3.5 \Rightarrow t=\sqrt{0.5} \Rightarrow y=2(7) \sqrt{0.5}$		Divides their x coordinate from (a) by 2 and substitutes this into the parabola equation and takes the sqaure root to find $y=\ldots$ or applies $y=\sqrt{\left(2(" 7 ")-\left(\frac{" 7 "}{2}\right)\right)^{2}-\left(\frac{" 7 "}{2}\right)^{2}}$ or solves $7 t^{2}=3.5$ and finds $y=2(7)$ "their $t "$	M1
	$y=(\pm) 7 \sqrt{2}$		At least one correct exact value of y. Can be un-simplified or simplified.	A1
	A, B have coordinates $\left(\frac{7}{2}, 7 \sqrt{2}\right)$ and $\left(\frac{7}{2},-7 \sqrt{2}\right)$			
			dependent on the previous M mark A full method for finding he area of triangle $A B S$.	dM1
		$=\frac{49}{2} \sqrt{2}$	Correct exact answer.	A1
				(4)
				5
	Question 2 Notes			
2. (a) (b)	$\xrightarrow{\text { Note }}$	You can give B1 for part (a) for correct relevant work seen in either part (a) or part (b)		
		Allow a slip when candidates find the x coordinate of their midpoint as long as $0<$ their midpoint < their a		
	Note	Give ${ }^{\text {st }}$ M0 if a candidate finds and uses $y=98$		
	$1^{\text {st }} \mathrm{A} 1$ $2^{\text {nd }} \mathrm{dM1}$ Note	Allow any exact value of either $7 \sqrt{2},-7$ Either $\frac{1}{2}(2 \times$ their $" 7 \sqrt{2} ")$ (their $\left.x_{\text {midpoint }}\right)$ Condone area triangle $A B S=(7 \sqrt{2})\left(\frac{7}{2}\right)$	$\sqrt{2}, \sqrt{98},-\sqrt{98}, 14 \sqrt{0.5}$, awrt 9.9 or or $\frac{1}{2}(2 \times$ their $" 7 \sqrt{2} ")\left(\right.$ their " 7 " $-x_{\text {midp }}$ i.e. $($ their " $7 \sqrt{2}$ " $)\left(\frac{\text { their " } 7 "}{2}\right)$	$\begin{aligned} & \text { wrt -9.9 } \\ & \text { pint }) \end{aligned}$
	$2^{\text {nd }}$ A1	Allow exact answers such as $\frac{49}{2} \sqrt{2}, \frac{49}{\sqrt{2}}, 24.5 \sqrt{2}, \frac{\sqrt{4802}}{2}, \sqrt{\frac{4802}{4}}, 3.5 \sqrt{2}, 49 \sqrt{\frac{1}{2}}$ or $\frac{7}{2} \sqrt{98}$ but do not allow $\frac{1}{2}(3.5)(2 \sqrt{98})$ seen by itself		
	Note	Give final A0 for finding $34.64823228 \ldots$ without reference to a correct exact value.		

Question Number	Scheme		Notes	Marks
3.	$\mathrm{f}(x)=x^{2}+\frac{3}{x}-1, \quad x<0$			
(a)	$\mathrm{f}^{\prime}(x)=2 x-3 x^{-2}$	At one of either $x^{2} \rightarrow \pm A x$ or $\frac{3}{x} \rightarrow \pm B x^{-2}$ where A and B are non-zero constants.		M1
			Correct differentiation	A1
	$f(-1.5)=-0.75, f^{\prime}(-1.5)=-\frac{13}{3} \quad$ a	Either $f(-1.5)=-0.75$ or $f^{\prime}(-1.5)=-\frac{13}{3}$ or awrt -4.33 or a correct numerical expression for either $f(-1.5)$ or $f^{\prime}(-1.5)$ Can be implied by later working		B1
	$\left\{\alpha \simeq-1.5-\frac{\mathrm{f}(-1.5)}{\mathrm{f}^{\prime}(-1.5)}\right\} \Rightarrow \alpha \simeq-1.5-\frac{-0.75}{-4.333333 .}$		adent on the previous M mark empt at Newton-Raphson using values of $f(-1.5)$ and $f^{\prime}(-1.5)$	dM1
	$\left\{\alpha=-1.67307692 . .\right.$. or $\left.-\frac{87}{52}\right\} \Rightarrow \alpha=-1.67$		ndent on all 4 previous marks -1.67 on their first iteration gnore any subsequent iterations)	A1 cso cao
	Correct differentiation followed by a correct answer scores full marks in (a) Correct answer with no working scores no marks in (a)			
				(5)
(b) Way 1	$\begin{aligned} & \mathrm{f}(-1.675)=0.01458022 \ldots \\ & \mathrm{f}(-1.665)=-0.0295768 \ldots \end{aligned}$	Chooses a suitable interval for x, which is within ± 0.005 of their answer to (a) and at least one attempt to evaluate $\mathrm{f}(x)$.		M1
	Sign change (positive, negative) (and $\mathrm{f}(x)$ is continuous) therefore (a root) $\alpha=-1.67$ (2 dp)	Both values correct awrt (or truncated) 1 sf, sign change and conclusion.		A1 cso
				(2)
(b) Way 2	Alt 1: Applying Newton-Raphson again Eg. Using $\alpha=-1.67,-1.673$ or $-\frac{87}{52}$			
	- $\alpha \simeq-1.67-\frac{-0.007507185629 \ldots}{-4.415692926 \ldots}\{=-1.671700115 \ldots\}$ - $\alpha \simeq-1.673-\frac{0.005743106396 \ldots}{-4.41783855 \ldots}\{=-1.671700019 \ldots\}$ - $\alpha \simeq-\frac{87}{52}-\frac{0.006082942257 \ldots}{-4.417893838 \ldots}\{=-1.67170036 \ldots\}$		Evidence of applying NewtonRaphson for a second time on their answer to part (a)	M1
	So $\alpha=-1.67$ (2 dp)		$\alpha=-1.67$	A1
				(2)
				7

			Question 3 Note
3. (a)	Note	Incorrect differentiation followed by their estimate of α with no evidence of applying the NR formula is final dM0A0.	
	B1	Eg. either $(-1.5)^{2}+\frac{3}{(-1.5)}-1$ or $2(-1.5)-\frac{3}{(-1.5)^{2}}$ are fine for B1.	
	Final dM1	This mark can be implied by applying at least one correct value of either $f(-1.5)$ or $f^{\prime}(-1.5)$ in $-1.5-\frac{\mathrm{f}(-1.5)}{\mathrm{f}^{\prime}(-1.5)}$. So just $-1.5-\frac{\mathrm{f}(-1.5)}{\mathrm{f}^{\prime}(-1.5)}$ with an incorrect answer and no other evidence	
	Note	Give final dM0 for applying $1.5-\frac{f(-1.5)}{f^{\prime}(-1.5)}$ without first quoting the correct N-R formula.	
3. (b)	A1	Way 1: correct solution only Candidate needs to state both of their values for $\mathrm{f}(x)$ to awrt (or truncated) 1 sf along with a reason and conclusion. Reference to change of sign or eg. $f(-1.675) \times f(-1.665)<0$ or a diagram or <0 and >0 or one positive, one negative are sufficient reasons. There must be a (minimal, not incorrect) conclusion, eg. $\alpha=-1.67$, root (or α or part (a)) is correct, QED and a square are all acceptable. Ignore the presence or absence of any reference to continuity. A minimal acceptable reason and conclusion is "change of sign, hence root". No explicit reference to 2 decimal places is required.	
	Note	Stating "root is in between -1.675 and -1.665 " without some reference to $\alpha=-1.67$ is not sufficient for A1	
	Note	Accept 0.015 as a correct evaluation of $\mathrm{f}(-1.675)$	
	A1	Way 2: correct solution only Their conclusion in Way 2 needs to convey that they understand that $\alpha=-1.67$ to 2 decimal places. Eg. "therefore my answer to part (a) [which must be -1.67] is correct" is fine for A1.	
	Note	$-1.67-\frac{\mathrm{f}(-1.67)}{\mathrm{f}^{\prime}(1.67)}=-1.67(2 \mathrm{dp}) \text { is sufficient for M1A1 in part (b). }$	
	Note	The root of $\mathrm{f}(x)=0$ is $-1.67169988 \ldots$, so candidates can also choose x_{1} which is less than $-1.67169988 \ldots$... and choose x_{2} which is greater than $-1.67169988 \ldots$ with both x_{1} and x_{2} lying in the interval $[-1.675,-1.665]$ and evaluate $\mathrm{f}\left(x_{1}\right)$ and $\mathrm{f}\left(x_{2}\right)$.	
3. (b)	Note	Helpful Table	
		x	$\mathrm{f}(\mathrm{x})$
		-1.675	0.014580224
		-1.674	0.010161305
		-1.673	0.005743106
		-1.672	0.001325627
		-1.671	-0.003091136
		-1.670	-0.007507186
		-1.669	-0.011922523
		-1.668	-0.016337151
		-1.667	-0.020751072
		-1.666	-0.025164288
		-1.665	-0.029576802

Question Number		Scheme	Notes	Marks
5.	$2 z+z^{*}=\frac{3+4 i}{7+i}$			
Way 1	$\left\{2 z+z^{*}=\right\} 2(a+i b)+(a-i b)$		Left hand side $=2(a+\mathrm{i} b)+(a-\mathrm{i} b)$ Can be implied by eg. $3 a+\mathrm{i} b$ Note: This can be seen anywhere in their solution	B1
	$\ldots \ldots \ldots . .=\frac{(3+4 i)}{(7+i)} \frac{(7-i)}{(7-i)}$		Multiplies numerator and denominator of the right hand side by $7-\mathrm{i}$ or $-7+\mathrm{i}$	M1
	$\frac{25+25 i}{50}$		Applies $\mathrm{i}^{2}=-1$ to and collects like terms to give right hand side $=\frac{25+25 \mathrm{i}}{50}$ or equivalent	A1
	$\begin{aligned} & \text { So, } 3 a+\mathrm{i} b=\frac{1}{2}+\frac{1}{2} \mathrm{i} \\ & \Rightarrow a=\frac{1}{6}, b=\frac{1}{2} \quad \text { or } \quad z=\frac{1}{6}+\frac{1}{2} \mathrm{i} \end{aligned}$		dependent on the previous B and M marks Equates either real parts or imaginary parts to give at least one of $a=\ldots$ or $b=\ldots$	ddM1
			Either $a=\frac{1}{6}$ and $b=\frac{1}{2}$ or $z=\frac{1}{6}+\frac{1}{2} \mathrm{i}$	A1
				(5)
Way 2	$\left\{2 z+z^{*}=\right\} 2(a+\mathrm{i} b)+(a-\mathrm{i} b)$		Left hand side $=2(a+\mathrm{i} b)+(a-\mathrm{i} b)$ Can be implied by eg. $3 a+\mathrm{i} b$	B1
	$(3 a+\mathrm{ib})(7+\mathrm{i})=.$.		Multiplies their ($3 a+\mathrm{ib}$) by ($7+\mathrm{i}$)	M1
	$21 a+3 a \mathrm{i}+7 \mathrm{bi}-b=\ldots$.		Applies $\mathrm{i}^{2}=-1$ to give left hand side $=21 a+3 a i+7 b i-b$	A1
	So, $(21 a-b)+(3 a+7 b)=3+4$ i gives $21 a-b=3,3 a+7 b=4$ $\Rightarrow a=\frac{1}{6}, b=\frac{1}{2} \quad \text { or } \quad z=\frac{1}{6}+\frac{1}{2} \mathrm{i}$		dependent on the previous B and M marks Equates both real parts and imaginary parts to give at least one of $a=\ldots$ or $b=\ldots$	ddM1
			Either $a=\frac{1}{6}$ and $b=\frac{1}{2}$ or $z=\frac{1}{6}+\frac{1}{2} \mathrm{i}$	A1
				(5)
				5
	Question 5 Notes			
5.	Note Note	Some candidates may let $z=x+\mathrm{i} y$ and $z^{*}=x-\mathrm{i} y$. So apply the mark scheme with $x \equiv a$ and $y \equiv b$. For the final A1 mark, you can accept exact equivalents for a, b		

Question Number	Scheme	Notes	Marks
6.	$H: x y=25, P\left(5 t, \frac{5}{t}\right)$ is a general point on H		
(a)	Either $5 t\left(\frac{5}{t}\right)=25$ or $y=\frac{25}{x}=\frac{25}{5 t}=\frac{5}{t}$ or $x=\frac{25}{y}=\frac{25}{\frac{5}{t}}=5 t$ or states $c=5$		B1
			(1)
(b)	$y=\frac{25}{x}=25 x^{-1} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=-25 x^{-2}=-\frac{25}{x^{2}}$	$\frac{\mathrm{d} y}{\mathrm{~d} x}= \pm k x^{-2}$ where k is a numerical value	M1
	$x y=25 \Rightarrow x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=0$	Correct use of product rule. The sum of two terms, one of which is correct.	
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \cdot \frac{\mathrm{~d} t}{\mathrm{~d} x}=-\frac{5}{t^{2}}\left(\frac{1}{5}\right)$	$\frac{\mathrm{d} y}{\mathrm{~d} t} \times \frac{1}{\text { their } \frac{\mathrm{d} x}{\mathrm{~d} t}}$	
	$\left\{\right.$ At $\left.A, t=\frac{1}{2}, x=\frac{5}{2}, y=10\right\} \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=-4$	Correct numerical gradient at A, which is found using calculus. Can be implied by later working	A1
	Applies $m_{N}=\frac{-1}{m_{T}}$, to find a numerical m_{N}, where m_{T} is found from using calculus. Can be implied by later working		M1
	- $y-10=\frac{1}{4}\left(x-\frac{5}{2}\right)$ - $10=\frac{1}{4}\left(\frac{5}{2}\right)+c \Rightarrow c=\frac{75}{8} \Rightarrow y=\frac{1}{4} x+\frac{75}{8}$	Correct line method for a normal where a numerical $m_{N}\left(\neq m_{T}\right)$ is found from using calculus. Can be implied by later working	M1
	leading to $\left.8 y-2 x-75=0 \quad{ }^{*}\right)$	Correct solution only	A1
			(5)
(c)	$\begin{gathered} y=\frac{25}{x} \Rightarrow 8\left(\frac{25}{x}\right)-2 x-75=0 \text { or } x=\frac{25}{y} \Rightarrow 8 y-2\left(\frac{25}{y}\right)-75=0 \\ \text { or } x=5 t, y=\frac{5}{t} \Rightarrow 8(5 t)-2\left(\frac{5}{t}\right)-75=0 \end{gathered}$ Substitutes $y=\frac{25}{x}$ or $x=\frac{25}{y}$ or $x=5 t$ and $y=\frac{5}{t}$ into the printed equation or their normal equation to obtain an equation in either x only, y only or t only		M1
	$2 x^{2}+75 x-200=0$ or $8 y^{2}-75 y-50=0$ or $2 t^{2}+15 t-8=0$ or $10 t^{2}+75 t-40=0$		
	$\begin{gathered} (2 x-5)(x+40)=0 \Rightarrow x=\ldots \text { or }(y-10)(8 y+5)=0 \Rightarrow y=\ldots \text { or }(2 t-1)(t+8)=0 \Rightarrow t=\ldots \\ \text { dependent on the previous } \mathbf{M} \text { mark } \\ \text { Correct attempt of solving a 3TQ to find either } x=\ldots, y=\ldots \text { or } t=\ldots \end{gathered}$		dM1
	Finds at least one of either $x=-40$ or $y=-\frac{5}{8}$		A1
	$B\left(-40,-\frac{5}{8}\right) \quad \begin{array}{r} \text { Both } \\ \text { stated the } \end{array}$	orrect coordinates (If coordinates are not can be paired together as $x=\ldots, y=\ldots$)	A1
			(4)
			10

	Question 6 Notes	
6. (a)	Note B1	A conclusion is not required on this occasion in part (a). Condone reference to $c=5$ (as $x y=c^{2}$ and $\left(c t, \frac{c}{t}\right)$ are referred in the Formula book.)
(b)	Note	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \cdot \frac{\mathrm{~d} t}{\mathrm{~d} x}=-\frac{5}{t^{2}}\left(\frac{1}{5}\right)=-\frac{1}{t^{2}} \Rightarrow m_{N}=t^{2} \Rightarrow y-10=t^{2}\left(x-\frac{5}{2}\right)$ scores only the first M1. When $t=\frac{1}{2}$ is substituted giving $y-10=\frac{1}{4}\left(x-\frac{5}{2}\right)$ the response then automatically gets A1(implied) M1(implied) M1
(c)	Note	You can imply the final three marks (dM1A1A1) for either - $8\left(\frac{25}{x}\right)-2 x-75=0 \rightarrow\left(-40,-\frac{5}{8}\right)$ - $8 y-2\left(\frac{25}{y}\right)-75=0 \rightarrow\left(-40,-\frac{5}{8}\right)$ - $8(5 t)-2\left(\frac{5}{t}\right)-75=0 \rightarrow\left(-40,-\frac{5}{8}\right)$ with no intermediate working.
		You can also imply the middle dM1A1 marks for either - $8\left(\frac{25}{x}\right)-2 x-75=0 \rightarrow x=-40$ - $8 y-2\left(\frac{25}{y}\right)-75=0 \rightarrow y=-\frac{5}{8}$ - $8(5 t)-2\left(\frac{5}{t}\right)-75=0 \rightarrow x=-40$ or $y=-\frac{5}{8}$ with no intermediate working.
	Note Note	Writing $x=-40, y=-\frac{5}{8}$ followed by $B\left(40, \frac{5}{8}\right)$ or $B\left(-\frac{5}{8},-40\right)$ is final A0. Ignore stating $B\left(\frac{5}{2}, 10\right)$ in addition to $B\left(-40,-\frac{5}{8}\right)$

Question Number	Scheme		Notes	Marks
7. (a)	Rotation		Rotation	B1
	67 degrees (anticlockwise)	$\text { Either } \arctan \left(\frac{12}{5}\right), \tan ^{-1}\left(\frac{12}{5}\right), \sin ^{-1}\left(\frac{12}{13}\right), \cos ^{-1}\left(\frac{5}{13}\right),$ awrt 67 degrees, awrt 1.2, truncated 1.1 (anticlockwise), awrt 293 degrees clockwise or awrt 5.1 clockwise		B1 o.e.
	about (0,0)	The mark is dependent on at least one of the previous B marks being awarded. About $(0,0)$ or about O or about the origin		dB1
	Note: Give $2^{\text {nd }} \mathrm{B} 0$ for 67 degrees	ckwise o.e.		(3)
(b)	$\{\mathbf{Q}=\}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$		Correct matrix	B1
				(1)
(c)	$\{\mathbf{R}=\mathbf{P Q}=\}\left(\begin{array}{cc}\frac{5}{13} & -\frac{12}{13} \\ \frac{12}{13} & \frac{5}{13}\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) ;=\left(\begin{array}{rr}-\frac{12}{13} & \frac{5}{13} \\ \frac{5}{13} & \frac{12}{13}\end{array}\right)$		Multiplies \mathbf{P} by their \mathbf{Q} in the correct order and finds at least one element	M1
			Correct matrix	A1
				(2)
(d) Way 1	$\left(\begin{array}{rr}-\frac{12}{13} & \frac{5}{13} \\ \frac{5}{13} & \frac{12}{13}\end{array}\right)\binom{x}{k x}=\binom{x}{k x}$	Forming Allow \boldsymbol{x} being Can be implied	equation "their matrix \mathbf{R} " $\binom{x}{k x}=\binom{x}{k x}$ laced by any non-zero number eg. 1. at least one correct ft equations below.	M1
	$-\frac{12}{13} x+\frac{5 k x}{13}=x$ or $\frac{5}{13} x+\frac{12 k x}{13}=k x \Rightarrow k=\ldots$		Uses their matrix equation to form an equation in k and progresses to give $k=$ numerical value	M1
	So $k=5$		endent on only the previous M mark $k=5$	A1 cao
	Dependent on all previous marks being scored in this part. Either - Solves both $-\frac{12}{13} x+\frac{5 k x}{13}=x$ and $\frac{5}{13} x+\frac{12 k x}{13}=k x$ to give $k=5$ - Finds $k=5$ and checks that it is true for the other component - Confirms that $\left(\begin{array}{rr}-\frac{12}{13} & \frac{5}{13} \\ \frac{5}{13} & \frac{12}{13}\end{array}\right)\binom{x}{5 x}=\binom{x}{5 x}$			A1 cso
				(4)
Way 2	Either $\cos 2 \theta=-\frac{12}{13}, \sin 2 \theta=\frac{5}{13}$ or $\tan 2 \theta=-\frac{5}{12}$		Correct follow through equation in 2θ based on their matrix \mathbf{R}	M1
	$\{k=\} \tan \left(\frac{1}{2} \arccos \left(-\frac{12}{13}\right)\right)$	Full method of finding 2θ, then θ and applying $\tan \theta$		M1
		$\begin{array}{r} \tan \left(\frac{1}{2} \arccos \left(-\frac{12}{13}\right)\right) \text { or } \tan \left(\operatorname{awrt} 78.7^{\circ}\right) \text { or } \\ \tan (\text { awrt } 1.37) . \text { Can be implied. } \end{array}$		A1
	So $k=5$		$k=5$ by a correct solution only	A1
				(4)
				10

	Question 7 Notes	
7. (a)	Note Note	Condone "Turn" for the $1^{\text {st }}$ B1 mark. Penalise the first B1 mark for candidates giving a combination of transformations.
(c)	Note	Allow $1^{\text {st }} \mathrm{M} 1$ for eg. "their matrix $\mathbf{R} "\binom{1}{k}=\binom{1}{k}$ or "their matrix $\mathbf{R} "\binom{k}{k^{2}}=\binom{k}{k^{2}}$ or "their matrix $\mathbf{R} "\binom{\frac{1}{k}}{1}=\binom{\frac{1}{k}}{1}$ or equivalent
	Note	$y=(\tan \theta) x:\left(\begin{array}{rr}\cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & -\cos 2 \theta\end{array}\right)=\left(\begin{array}{rr}-\frac{12}{13} & \frac{5}{13} \\ \frac{5}{13} & \frac{12}{13}\end{array}\right)$

Question Number	Scheme	Notes	Marks
9.	$2 x^{2}+4 x-3=0$ has roots α, β		
(a)(i)	$\alpha+\beta=-\frac{4}{2}$ or $-2, \alpha \beta=-\frac{3}{2}$	Both $\alpha+\beta=-\frac{4}{2}$ and $\alpha \beta=-\frac{3}{2}$. This may be seen or implied anywhere in this question.	B1
	$\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=\ldots \ldots$.	Use of a correct identity for $\alpha^{2}+\beta^{2}$ (May be implied by their work)	M1
	$=(-2)^{2}-2\left(-\frac{3}{2}\right)=7$	7 from correct working	A1 cso
(ii)	$\begin{aligned} & \alpha^{3}+\beta^{3}=(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)=\ldots \ldots . \\ & \text { or }=(\alpha+\beta)\left(\alpha^{2}+\beta^{2}-\alpha \beta\right)=\ldots . . . \end{aligned}$	Use of an appropriate and correct identity for $\alpha^{3}+\beta^{3}$ (May be implied by their work)	M1
	$\begin{aligned} & =(-2)^{3}-3\left(-\frac{3}{2}\right)(-2)=-17 \\ \text { or } & =(-2)\left(7--\frac{3}{2}\right)=-17 \end{aligned}$	-17 from correct working	A1 cso
			(5)
(b)	$\begin{aligned} \text { Sum } & =\alpha^{2}+\beta+\beta^{2}+\alpha \\ & =\alpha^{2}+\beta^{2}+\alpha+\beta \\ & =7+(-2)=5 \end{aligned}$	Uses at least one of their $\alpha^{2}+\beta^{2}$ or $\alpha+\beta$ in an attempt to find a numerical value for the sum of $\left(\alpha^{2}+\beta\right) \text { and }\left(\beta^{2}+\alpha\right)$	M1
	$\begin{aligned} \text { Product } & =\left(\alpha^{2}+\beta\right)\left(\beta^{2}+\alpha\right) \\ & =(\alpha \beta)^{2}+\alpha^{3}+\beta^{3}+\alpha \beta \\ & =\left(-\frac{3}{2}\right)^{2}-17-\frac{3}{2}=-\frac{65}{4} \end{aligned}$	Expands $\left(\alpha^{2}+\beta\right)\left(\beta^{2}+\alpha\right)$ and uses at least one of their $\alpha \beta$ or $\alpha^{3}+\beta^{3}$ in an attempt to find a numerical value for the product of $\left(\alpha^{2}+\beta\right)$ and $\left(\beta^{2}+\alpha\right)$	M1
	$x^{2}-5 x-\frac{65}{4}=0$	Applies $x^{2}-$ (sum) $x+$ product (Can be implied) (" $=0$ " not required)	M1
	$4 x^{2}-20 x-65=0$	Any integer multiple of $4 x^{2}-20 x-65=0$, including the " $=0$ "	A1
			(4)
	Alternative: Finding $\alpha^{2}+\beta$ and $\beta^{2}+\alpha$ explicitly		
(b)	Eg. Let $\alpha=\frac{-4+\sqrt{40}}{4}, \beta=\frac{-4+\sqrt{40}}{4}$ and so $\alpha^{2}+\beta=\frac{5-3 \sqrt{10}}{2}, \quad \beta^{2}+\alpha=\frac{5+3 \sqrt{10}}{2}$		
	$\left(x-\left(\frac{5-3 \sqrt{10}}{2}\right)\right)\left(\left(x-\left(\frac{5+3 \sqrt{10}}{2}\right)\right)\right.$	$\text { Uses }\left(x-\left(\alpha^{2}+\beta\right)\right)\left(x-\left(\beta^{2}+\alpha\right)\right)$ with exact numerical values. (May expand first)	M1
	$=x^{2}-\left(\frac{5+3 \sqrt{10}}{2}\right) x-\left(\frac{5-3 \sqrt{10}}{2}\right) x+\left(\frac{5-3 \sqrt{10}}{2}\right)\left(\frac{5+3 \sqrt{10}}{2}\right)$	$\left.\begin{array}{r\|r}2\end{array} \frac{-3 \sqrt{10}}{2}\right)\left(\frac{5+3 \sqrt{10}}{2}\right) \quad$Attempts to expand using exact numerical values for $\alpha^{2}+\beta$ and $\beta^{2}+\alpha$	M1
	$\Rightarrow x^{2}-5 x-\frac{65}{4}=0$	Collect terms to give a 3TQ. (" $=0$ " not required)	M1
	$4 x^{2}-20 x-65=0$	Any integer multiple of $4 x^{2}-20 x-65=0$, including the " $=0$ "	A1
			(4)
			9

	Question 9 Notes	
9. (a)	$\mathbf{1 s t}^{\text {st }}$ A1	$\alpha+\beta=2, \alpha \beta=-\frac{3}{2} \Rightarrow \alpha^{2}+\beta^{2}=4-2\left(-\frac{3}{2}\right)=7 \text { is M1A0 cso }$
(a)	Note	Finding $\alpha+\beta=-2, \alpha \beta=-\frac{3}{2}$ by writing down or applying $\frac{-4+\sqrt{40}}{4}, \frac{-4+\sqrt{40}}{4}$ but then writing $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=4+3=7$ and $\alpha^{3}+\beta^{3}=(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)=-8-9=-17$ scores B0M1A0M1A0 in part (a).
	Note	Applying $\frac{-4+\sqrt{40}}{4}, \frac{-4+\sqrt{40}}{4}$ explicitly in part (a) will score B0M0A0M0A0 Eg: Give no credit for $\left(\frac{-4+\sqrt{40}}{4}\right)^{2}+\left(\frac{-4+\sqrt{40}}{4}\right)^{2}=7$ or for $\left(\frac{-4+\sqrt{40}}{4}\right)^{3}+\left(\frac{-4+\sqrt{40}}{4}\right)^{3}=-17$
(b)	Note	Candidates are allowed to apply $\frac{-4+\sqrt{40}}{4}, \frac{-4+\sqrt{40}}{4}$ explicitly in part (b).
	Note	A correct method leading to a candidate stating $a=4, b=-20, c=-65$ without writing a final answer of $4 x^{2}-20 x-65=0$ is final M1A0

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R ORL

