

Mark Scheme (Results)

Summer 2016

Pearson Edexcel IAL in Further Pure Mathematics 1 (WFM01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at www.pearson.com/uk

Summer 2016
Publications Code WFM01_01_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- L or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2+bx+c)=(x+p)(x+q)$$
, where $|pq|=|c|$, leading to $x=...$
 $(ax^2+bx+c)=(mx+p)(nx+q)$, where $|pq|=|c|$ and $|mn|=|a|$, leading to $x=...$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \to x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \to x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number		Scheme	Notes	Marks			
1.	$\sum_{r=1}^{n} r(r^2 -$	$-3) = \sum_{r=1}^{n} r^3 - 3\sum_{r=1}^{n} r$					
		$= \frac{1}{4}n^2(n+1)^2 - 3\left(\frac{1}{2}n(n+1)\right)$	Attempts to expand $r(r^2-3)$ and attempts to substitute at least one correct standard formula into their resulting expression.	M1			
			Correct expression (or equivalent)	A1			
		$=\frac{1}{4}n(n+1)\Big[n(n+1)-6\Big]$	dependent on the previous M mark Attempt to factorise at least $n(n+1)$ having attempted to substitute both the standard formulae	dM1			
		$= \frac{1}{4}n(n+1)\Big[n^2 + n - 6\Big]$	{this step does not have to be written]				
		$= \frac{1}{4}n(n+1)\left[n^2 + n - 6\right]$ $= \frac{1}{4}n(n+1)(n+3)(n-2)$	Correct completion with no errors	A1 cso			
				(4)			
			0 (1)	4			
1.	Note		Question 1 Notes of the printed equation without applying the standard	d formulae			
1.	Note		other combination of these numbers is M0A0M0A0				
	Alt	Alternative Method: Obtains 2	$\sum_{n=1}^{\infty} r(r^2 - 3) = \frac{1}{4} n(n+1) \Big[n(n+1) - 6 \Big] = \frac{1}{4} n(n+a)$	(n+b)(n+c)			
		•	$(2)(1+b)(1+c)$ and $n=2 \Rightarrow 0 = \frac{1}{4}(2)(3)(2+b)(2-b)$	+ <i>c</i>)			
		leading to either $b = -2$, $c = 3$ or					
	dM1	dependent on the previous M n					
	A1	Substitutes in values of n and solution $a = 1$, $b = 3$, $c = -2$ or another.	ves to find $b =$ and $c =$ ther combination of these numbers.				
	Note		y induction" scores 0 marks unless there is use of the	ne standard			
	11010	formulae when the first M1 may		ic standard			
	Note	Allow final dM1A1 for $\frac{1}{4}n^4 + \frac{1}{2}n^3 - \frac{5}{4}n^2 - \frac{3}{2}n$ or $\frac{1}{4}n(n^3 + 2n^2 - 5n - 6)$					
		or $\frac{1}{4}(n^4 + 2n^3 - 5n^2 - 6n) \to \frac{1}{4}$	-n(n+1)(n+3)(n-2), from no incorrect working.				
	Note	Give final A0 for eg. $\frac{1}{4}n(n+1)$	$[n^2 + n - 6] \rightarrow = \frac{1}{4}n(n+1)(x+3)(x-2)$ unless red	covered.			

Question Number		Scheme	Notes	Marks		
2.	$P: y^2 = 2$	$8x \text{ or } P(7t^2, 14t)$				
(a)		$\Rightarrow a = 7) \Rightarrow S(7,0)$	Accept $(7,0)$ or $x = 7$, $y = 0$ or 7 marked on the <i>x</i> -axis in a sketch	B1 (1)		
(b)		have x coordinate $\left\{ \frac{7}{2} \right\}$	Divides their <i>x</i> coordinate from (a) by 2 and substitutes this into the parabola equation and takes the square root to	(-)		
	or	$8\left(\frac{7}{2}\right) \Rightarrow y^2 = 98 \Rightarrow y = \dots$ $7(1) - 3.5(1)^2 - (3.5(1)^2) = \sqrt{(10.5)^2 - (3.5(1)^2)}$	find $y = \dots$ or applies $y = \sqrt{\left(2("7") - \left(\frac{"7"}{2}\right)\right)^2 - \left(\frac{"7"}{2}\right)^2}$	M1		
	or $7t^2 = 3.5$	$\Rightarrow t = \sqrt{0.5} \Rightarrow y = 2(7)\sqrt{0.5}$	or solves $7t^2 = 3.5$ and finds $y = 2(7)$ "their t "			
	$y = (\pm)7$	$\sqrt{2}$	At least one correct exact value of y. Can be un-simplified or simplified.	A1		
	A, B have	coordinates $\left(\frac{7}{2}, 7\sqrt{2}\right)$ and $\left(\frac{7}{2}, -7\sqrt{2}\right)$				
	2	gle $ABS =$ $ \left(2(7\sqrt{2})\right)\left(\frac{7}{2}\right) $ $ \begin{vmatrix} 7 & 3.5 & 3.5 & 7 \\ 0 & 7\sqrt{2} & -7\sqrt{2} & 0 \end{vmatrix} $	dependent on the previous M mark A full method for finding he area of triangle ABS.	dM1		
		$=\frac{49}{2}\sqrt{2}$	Correct exact answer.	A1		
				(4)		
		Question	n 2 Notes	5		
2. (a)	Note		elevant work seen in either part (a) or part ((b)		
(b)	1 st M1	Allow a slip when candidates find the x c $0 < \text{their midpoint} < \text{their } a$		`		
	Note	Give 1st M0 if a candidate finds and uses	y = 98			
	1 st A1	Allow any exact value of either $7\sqrt{2}$, –	$7\sqrt{2}$, $\sqrt{98}$, $-\sqrt{98}$, $14\sqrt{0.5}$, awrt 9.9 or a	wrt – 9.9		
	2 nd dM1	Either $\frac{1}{2} \left(2 \times \text{their } "7\sqrt{2}" \right) \left(\text{their } x_{\text{midpoint}} \right)$	or $\frac{1}{2} \left(2 \times \text{their } 7\sqrt{2} \right) \left(\text{their } 7 - x_{\text{midpe}} \right)$	oint)		
	Note	Condone area triangle $ABS = \left(7\sqrt{2}\right)\left(\frac{7}{2}\right)$, i.e. $\left(\text{their "}7\sqrt{2}\right)\left(\frac{\text{their "}7"}{2}\right)$				
	2 nd A1	Allow exact answers such as $\frac{49}{2}\sqrt{2}$, $\frac{49}{\sqrt{2}}$, $24.5\sqrt{2}$, $\frac{\sqrt{4802}}{2}$, $\sqrt{\frac{4802}{4}}$, $3.5\sqrt{2}$, $49\sqrt{\frac{1}{2}}$				
		or $\frac{7}{2}\sqrt{98}$ but do not allow $\frac{1}{2}(3.5)(2\sqrt{9})$	8) seen by itself			
	Note	Give final A0 for finding 34.64823228	without reference to a correct exact value.			

Question Number	Scheme			Notes	Marks
3.	$f(x) = x^2 + \frac{3}{x} - 1, x < 0$				
(a)	$f'(x) = 2x - 3x^{-2}$	A		ither $x^2 \to \pm Ax$ or $\frac{3}{x} \to \pm Bx^{-2}$ e A and B are non-zero constants.	M1
	$f(-1.5) = -0.75$, $f'(-1.5) = -\frac{13}{3}$		-4.33 or	Correct differentiation $f'(-1.5) = -\frac{13}{3}$ or a correct numerical expression for either $f(-1.5)$ or $f'(-1.5)$ an be implied by later working	A1 B1
	$\left\{\alpha \simeq -1.5 - \frac{f(-1.5)}{g(-1.5)}\right\} \Rightarrow \alpha \simeq -1.5 - \frac{-0.75}{4.232323}$ dependent on the previous M mar Valid attempt at Newton-Raphson usin		endent on the previous M mark	dM1	
	$\left\{\alpha = -1.67307692 \text{ or } -\frac{87}{52}\right\} \Rightarrow \alpha = -1.67$ dependent on all 4 previous marks $-1.67 \text{ on their first iteration}$ (Ignore any subsequent iterations)		A1 cso cao		
	Correct differentiation followed by		ct answer	scores full marks in (a)	
	Correct answer with <u>no</u> v	working	scores no	marks in (a)	(5)
(b) Way 1	f(-1.675) = 0.01458022 f(-1.665) = -0.0295768		within ±0	a suitable interval for x , which is .005 of their answer to (a) and at ast one attempt to evaluate $f(x)$.	(5) M1
	Sign change (positive, negative) (and $f(x)$ is continuous) therefore (a root) $\alpha = -1.67$ (2 dg	p)		values correct awrt (or truncated) 1 sf, sign change and conclusion.	A1 cso
				Q7	(2)
(b)	Alt 1: Applying Newton-Raphson again E	g. Using	$\alpha = -1.6$	$7, -1.673 \text{ or } -\frac{87}{52}$	
Way 2	• $\alpha \simeq -1.67 - \frac{-0.007507185629}{-4.415692926} \left\{ = -0.007507185629 \right\}$ • $\alpha \simeq -1.673 - \frac{0.005743106396}{-4.41783855} \left\{ = -0.006082942257 \right\}$ • $\alpha \simeq -\frac{87}{52} - \frac{0.006082942257}{-4.417893838} \left\{ = -1.006082942257 \right\}$	-1.67170	0019}	Evidence of applying Newton- Raphson for a second time on their answer to part (a)	M1
	So $\alpha = -1.67 (2 \text{ dp})$			$\alpha = -1.67$	A1
		Т			(2)
					7

		Question 3 Notes								
3. (a)	Note	Incorrect differentiation followed by their estimate of α with no evidence of applying the								
		NR formula is final dM0A0.								
	B1	B1 can be given for a correct numerical expression for either $f(-1.5)$ or $f'(-1.5)$								
		Eg. either $(-1.5)^2 + \frac{3}{(-1.5)} - 1$ or $2(-1.5) - \frac{3}{(-1.5)^2}$ are fine for B1.								
	Final	This mark can be implied by applying at least one correct value of either $f(-1.5)$ or $f'(-1.5)$								
	dM1	in $-1.5 - \frac{f(-1.5)}{f'(-1.5)}$. So just $-1.5 - \frac{f(-1.5)}{f'(-1.5)}$ with an incorrect answer and no other evidence								
	Note	scores final dM0A0. Give final dM0 for applying $1.5 - \frac{f(-1.5)}{f'(-1.5)}$ without first quoting the correct N-R formula.								
3. (b)	A1	Way 1: correct solution only								
		Candidate needs to state both of their values for $f(x)$ to awrt (or truncated) 1 sf along with								
		a reason and conclusion. Reference to change of sign or eg. $f(-1.675) \times f(-1.665) < 0$								
		or a diagram or < 0 and > 0 or one positive, one negative are sufficient reasons. There must								
		be a (minimal, not incorrect) conclusion, eg. $\alpha = -1.67$, root (or α or part (a)) is correct, QED								
		and a square are all acceptable. Ignore the presence or absence of any reference to continuity.								
		A minimal acceptable reason and conclusion is "change of sign, hence root".								
		No explicit reference to 2 decimal places is required.								
	Note	Stating "root is in between -1.675 and -1.665 " without some reference to $\alpha = -1.67$ is not								
	N T 4	sufficient for A1 Accept 0.015 as a correct evaluation of $f(-1.675)$								
	Note									
	A1	Way 2: correct solution only Their conclusion in Way 2 needs to convey that they understand that $\alpha = -1.67$ to 2 decimal								
		places. Eg. "therefore my answer to part (a) [which must be -1.67] is correct" is fine for A1.								
	Note	$-1.67 - \frac{f(-1.67)}{f'(1.67)} = -1.67(2 \text{ dp})$ is sufficient for M1A1 in part (b).								
	Note	The root of $f(x) = 0$ is -1.67169988 , so candidates can also choose x_1 which is less than								
		-1.67169988 and choose x_2 which is greater than -1.67169988 with both x_1 and x_2 lying								
		in the interval $\begin{bmatrix} -1.675, -1.665 \end{bmatrix}$ and evaluate $f(x_1)$ and $f(x_2)$.								
3. (b)	Note	Helpful Table								
0.(0)	11000	x $f(x)$								
		-1.675 0.014580224								
		-1.674 0.010161305								
		-1.673 0.005743106								
		-1.672 0.001325627								
		-1.671 -0.003091136								
		-1.670 -0.007507186								
		-1.669 -0.011922523								
		-1.668 -0.016337151								
		-1.667 -0.020751072								
		-1.666 -0.025164288								
		-1.665 -0.029576802								

Question Number		Scheme		Notes	Marks
4.	$\mathbf{A} = \begin{pmatrix} k \\ -1 \end{pmatrix}$	$\begin{pmatrix} 3 \\ k+2 \end{pmatrix}$, where <i>k</i> is a constant and let §	$g(k) = k^2 + 2k +$	3	
(a)	$\left\{ \det(\mathbf{A}) = \right\}$	$=$ $k(k+2)+3$ or k^2+2k+3	Correct det(A), un-simplified or simplified	B1
Way 1		$(k+1)^2 - 1 + 3$	Att	empts to complete the square [usual rules apply]	M1
	=	$((k+1)^2 + 2 > 0$		$(k+1)^2 + 2$ and > 0	A1 cso
(a)	$\left\{ \det(\mathbf{A}) = \right\}$	$= \begin{cases} k(k+2) + 3 \text{ or } k^2 + 2k + 3 \end{cases}$	Correct det(A), un-simplified or simplified	(3) B1
Way 2	($\frac{1}{12} = 2^2 - 4(1)(3)$	Applie	es " $b^2 - 4ac$ " to their det(A)	M1
	All of • b • so	$c^{2} - 4ac = -8 < 0$ The properties of the contraction of the contr	ve the x-axis	Complete solution	A1 cso (3)
(a)	g(k) = d	$\det(\mathbf{A}) = k(k+2) + 3 \text{ or } k^2 + 2k + 3$	Correct det(A), un-simplified or simplified	B1
Way 3	g'(k) = 2	$k+2=0 \Rightarrow k=-1$		alue of k for which $g'(k) = 0$	M1
		$\frac{1)^2 + 2(-1) + 3}{1 + (-1) + 3}$		tutes this value of k into $g(k)$	
	$g_{\min} = 2$,	so $\det(\mathbf{A}) > 0$	٤	$g_{\min} = 2$ and states $\det(\mathbf{A}) > 0$	A1 cso (3)
(b)	$\mathbf{A}^{-1} = \frac{1}{k}$	$\frac{1}{\binom{2}{2}+2k+3}\binom{k+2}{1}\binom{k}{k}$		$\frac{1}{\text{their det}(\mathbf{A})} \begin{pmatrix} k+2 & -3 \\ 1 & k \end{pmatrix}$	
				Correct answer in terms of <i>k</i>	A1 (2)
					(2)
			stion 4 Notes		
4. (a)	B1			1 / J-4(A) > 0	
	Note	Way 2: Proving $b^2 - 4ac = -8 < 0$			
	Note Note	To gain the final A1 mark for Way 2, some reference to $k^2 + 2k + 3$ being a positive or evaluates $\det(\mathbf{A})$ for any quadratic curve that is above the <i>x</i> -ax Attempting to solve $\det(\mathbf{A}) = 0$ by a is enough to score the M1 mark for W some reference to $k^2 + 2k + 3$ being a positive or evaluates $\det(\mathbf{A})$ for any quadratic curve that is above the <i>x</i> -ax	above the <i>x</i> -axis value of <i>k</i> to giv is) before then supplying the quadway 2. To gain Anabove the <i>x</i> -axis value of <i>k</i> to giv	(eg. states that coefficient of a e a positive result or sketches attaing that $\det(\mathbf{A}) > 0$. ratic formula or finding -1 ± 4 . At these candidates need to make (eg. states that coefficient of a e a positive result or sketches)	k^2 is a $\sqrt{2}i$ ke k^2 is
(b)	A1	Allow either $\frac{1}{(k+1)^2 + 2} \begin{pmatrix} k+2 & -3\\ 1 & k \end{pmatrix}$	or $ \left(\frac{k+2}{k^2+2k+1} \right) $ $ \left(\frac{1}{k^2+2k+1} \right) $	$ \frac{-3}{k^2+2k+3} = \frac{-3}{k^2+2k+3} $ or equivalen	t.

Question Number		Scheme	Notes	Marks	
5.	$2z + z^* =$	$=\frac{3+4i}{7+i}$			
Way 1	$\left\{2z+z^*=\right.$	$= \begin{cases} 2(a+ib) + (a-ib) \end{cases}$	Left hand side = $2(a+ib) + (a-ib)$ Can be implied by eg. $3a + ib$ Note: This can be seen anywhere in their solution	B1	
	= -	$\frac{(3+4i)}{(7+i)}\frac{(7-i)}{(7-i)}$	Multiplies numerator and denominator of the right hand side by $7 - i$ or $-7 + i$	M1	
	= -	$\frac{25 + 25i}{50}$	Applies $i^2 = -1$ to and collects like terms to give right hand side = $\frac{25 + 25i}{50}$ or equivalent	A1	
		$ib = \frac{1}{2} + \frac{1}{2}i$	dependent on the previous B and M marks Equates either real parts or imaginary parts to give at least one of $a =$ or $b =$	ddM1	
	$\Rightarrow a = \frac{1}{6}$	$b = \frac{1}{2}$ or $z = \frac{1}{6} + \frac{1}{2}i$	Either $a = \frac{1}{6}$ and $b = \frac{1}{2}$ or $z = \frac{1}{6} + \frac{1}{2}i$	A1	
				(5)	
Way 2	`	$= \begin{cases} 2(a+ib) + (a-ib) \end{cases}$	Left hand side = $2(a+ib) + (a-ib)$ Can be implied by eg. $3a + ib$	B1	
	(3a + ib)	$(7 + i) = \dots$	Multiplies their $(3a + ib)$ by $(7 + i)$	M1	
	21 <i>a</i> + 3 <i>a</i> i	$i + 7bi - b = \dots$	Applies $i^2 = -1$ to give left hand side = $21a + 3ai + 7bi - b$	A1	
		(a-b) + (3a+7b) = 3 + 4i (a-b) = 3, 3a+7b=4	dependent on the previous B and M marks Equates both real parts and imaginary parts to give at least one of $a =$ or $b =$	ddM1	
	$\Rightarrow a = \frac{1}{6}$	$, b = \frac{1}{2}$ or $z = \frac{1}{6} + \frac{1}{2}i$	Either $a = \frac{1}{6}$ and $b = \frac{1}{2}$ or $z = \frac{1}{6} + \frac{1}{2}i$	A1	
				(5)	
				5	
		Question 5 Notes			
5.	Note	Some candidates may let $z = x + iy$ and $z^* = x - iy$.			
		So apply the mark scheme with	So apply the mark scheme with $x \equiv a$ and $y \equiv b$.		
	Note				

Question Number	Scheme		Notes	Marks
6.	$H: xy = 25$, $P\left(5t, \frac{5}{t}\right)$ is a general point on			
(a)	Either $5t \left(\frac{5}{t} \right) = 25$ or $y = \frac{25}{x} = \frac{25}{5t} = \frac{25}{5t}$	$=\frac{5}{t}$ or	$x = \frac{25}{y} = \frac{25}{\frac{5}{t}} = 5t$ or states $c = 5$	B1
				(1)
(b)	$y = \frac{25}{x} = 25x^{-1} \Rightarrow \frac{dy}{dx} = -25x^{-2} = -\frac{25}{x^2}$		$\frac{dy}{dx} = \pm k x^{-2}$ where k is a numerical value	
	$xy = 25 \Rightarrow x\frac{\mathrm{d}y}{\mathrm{d}x} + y = 0$		Correct use of product rule. The sum of two terms, one of which is correct.	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = -\frac{5}{t^2} \left(\frac{1}{5}\right)$		$\frac{\mathrm{d}y}{\mathrm{d}t} \times \frac{1}{\mathrm{their}} \frac{\mathrm{d}x}{\mathrm{d}t}$	
	$\left\{ \text{At } A, \ t = \frac{1}{2}, \ x = \frac{5}{2}, \ y = 10 \right\} \Rightarrow \frac{dy}{dx} = -4$		Correct numerical gradient at <i>A</i> , which is found using calculus. Can be implied by later working	A1
	So, $m_N = \frac{1}{4}$	Ap	oplies $m_N = \frac{-1}{m_T}$, to find a numerical m_N , where m_T is found from using calculus. Can be implied by later working	M1
	$\bullet \qquad y - 10 = \frac{1}{4} \left(x - \frac{5}{2} \right)$		Correct line method for a normal where a numerical $m_N (\neq m_T)$ is found	M1
	• $10 = \frac{1}{4} \left(\frac{5}{2} \right) + c \Rightarrow c = \frac{75}{8} \Rightarrow y = \frac{1}{4}$	$x + \frac{75}{8}$		IVII
	leading to $8y - 2x - 75 = 0$ (*)		Correct solution only	A1
				(5)
(c)	$y = \frac{25}{x} \implies 8\left(\frac{25}{x}\right) - 2x - 75 = 0$		<i>y y y y y y y y y y</i>	
	or $x = 5t$, $y = \frac{5}{t} = \frac{5}{t}$	$\Rightarrow 8(5t)$	$)-2\left(\frac{5}{t}\right)-75=0$	M1
	Substitutes $y = \frac{25}{x}$ or $x = \frac{25}{y}$ or x		V	
	or their normal equation to obtain an			
	$2x^{2} + 75x - 200 = 0 \text{or} 8y^{2} - 75y - 5$ $(2x - 5)(x + 40) = 0 \Rightarrow x = \dots \text{ or } (y - 10)(8)$		or $2t^2 + 15t - 8 = 0$ or $10t^2 + 75t - 40 = 0$	
	$(2x-5)(x+40) = 0 \Rightarrow x = \dots \text{ or } (y-10)(8)$ dependent on the		· · · · · · · · · · · · · · · · · · ·	dM1
	Correct attempt of solving a 3TQ	_		GIVII
	Finds at least one of e	either x	$y = -40$ or $y = -\frac{5}{8}$	A1
	$B\left(-40, -\frac{5}{8}\right)$ sta		n correct coordinates (If coordinates are not ey can be paired together as $x =, y =$)	A1
				(4)
				10

		Question 6 Notes
6. (a)	Note	A conclusion is not required on this occasion in part (a).
	B1	Condone reference to $c = 5$ (as $xy = c^2$ and $\left(ct, \frac{c}{t}\right)$ are referred in the Formula book.)
(b)	Note	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = -\frac{5}{t^2} \left(\frac{1}{5}\right) = -\frac{1}{t^2} \Rightarrow m_N = t^2 \Rightarrow y - 10 = t^2 \left(x - \frac{5}{2}\right)$ scores only the first M1.
		When $t = \frac{1}{2}$ is substituted giving $y - 10 = \frac{1}{4} \left(x - \frac{5}{2} \right)$
		the response then automatically gets A1(implied) M1(implied) M1
(c)	Note	You can imply the final three marks (dM1A1A1) for either
		• $8\left(\frac{25}{x}\right) - 2x - 75 = 0 \to \left(-40, -\frac{5}{8}\right)$
		$\bullet 8y - 2\left(\frac{25}{y}\right) - 75 = 0 \rightarrow \left(-40, -\frac{5}{8}\right)$
		$\bullet 8(5t) - 2\left(\frac{5}{t}\right) - 75 = 0 \rightarrow \left(-40, -\frac{5}{8}\right)$
		with no intermediate working.
		You can also imply the middle dM1A1 marks for either
		• $8\left(\frac{25}{x}\right) - 2x - 75 = 0 \to x = -40$
		• $8y - 2\left(\frac{25}{y}\right) - 75 = 0 \to y = -\frac{5}{8}$
		• $8(5t) - 2(\frac{5}{t}) - 75 = 0 \rightarrow x = -40 \text{ or } y = -\frac{5}{8}$
		with no intermediate working.
	Note	Writing $x = -40$, $y = -\frac{5}{8}$ followed by $B\left(40, \frac{5}{8}\right)$ or $B\left(-\frac{5}{8}, -40\right)$ is final A0.
	Note	Ignore stating $B\left(\frac{5}{2}, 10\right)$ in addition to $B\left(-40, -\frac{5}{8}\right)$

Question Number	Scheme		Notes	Marks
7. (a)	Rotation		Rotation	B1
	67 degrees (anticlockwise)	awrt 67 de	er $\arctan\left(\frac{12}{5}\right)$, $\tan^{-1}\left(\frac{12}{5}\right)$, $\sin^{-1}\left(\frac{12}{13}\right)$, $\cos^{-1}\left(\frac{5}{13}\right)$, grees, awrt 1.2, truncated 1.1 (anticlockwise), 293 degrees clockwise or awrt 5.1 clockwise	B1 o.e.
	about (0,0)	Т	The mark is dependent on at least one of the previous B marks being awarded. About $(0,0)$ or about O or about the origin	dB1
	Note: Give 2 nd B0 for 67 degrees	clockwise o.e.		(3)
(b)	$\left\{\mathbf{Q} = \right\} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$		Correct matrix	B1
				(1)
(c)	$\left\{ \mathbf{R} = \mathbf{PQ} = \right\} \begin{pmatrix} \frac{5}{13} & -\frac{12}{13} \\ \frac{12}{12} & \frac{5}{12} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; =$	$\begin{pmatrix} -\frac{12}{13} & \frac{5}{13} \\ \frac{5}{13} & \frac{13}{13} \end{pmatrix}$	Multiplies P by their Q in the correct order and finds at least one element	M1
	$\left(\begin{array}{ccc} \frac{12}{13} & \frac{3}{13} \right) \left(\begin{array}{ccc} 1 & 0 \end{array}\right)$	$\left(\begin{array}{cc} \frac{3}{13} & \frac{12}{13} \right)$	Correct matrix	A1
				(2)
(d) Way 1	$\begin{pmatrix} -\frac{12}{13} & \frac{5}{13} \\ \frac{5}{13} & \frac{12}{13} \end{pmatrix} \begin{pmatrix} x \\ kx \end{pmatrix} = \begin{pmatrix} x \\ kx \end{pmatrix}$	Allow x bei	ing the equation "their matrix \mathbf{R} " $\begin{pmatrix} x \\ kx \end{pmatrix} = \begin{pmatrix} x \\ kx \end{pmatrix}$ ing replaced by any non-zero number eg. 1.	M1
	$-\frac{12}{13}x + \frac{5kx}{13} = x \text{ or } \frac{5}{13}x + \frac{12kx}{13} = \frac{12}{13}x + \frac{12}$		lied by at least one correct ft equations below. Uses their matrix equation to form an equation in k and progresses to give $k = \text{numerical value}$	M1
	So <i>k</i> = 5		dependent on only the previous M mark $k = 5$	A1 cao
	Dependent on all previous marks	s being scored	d in this part. Either	
	• Solves both $-\frac{12}{13}x + \frac{5kx}{13}$ • Finds $k = 5$ and checks that	at it is true for	13	A1 cso
	• Confirms that $\begin{pmatrix} -\frac{12}{13} & \frac{5}{13} \\ \frac{5}{13} & \frac{12}{13} \end{pmatrix}$	$\begin{bmatrix} x \\ 5x \end{bmatrix} = \begin{bmatrix} x \\ 5x \end{bmatrix}$		
			_	(4)
(d)	Either $\cos 2\theta = -\frac{12}{13}$, $\sin 2\theta = \frac{5}{13}$			M1
Way 2			hod of finding 2θ , then θ and applying $\tan \theta$	M1
	$\left\{k = \frac{1}{2} \arctan\left(\frac{1}{2} \arccos\left(-\frac{12}{13}\right)\right)\right\}$		$\tan\left(\frac{1}{2}\arccos\left(-\frac{12}{13}\right)\right)$ or $\tan\left(\operatorname{awrt} 78.7^{\circ}\right)$ or	A1
			tan(awrt 1.37). Can be implied.	
	So $k = 5$		k = 5 by a correct solution only	A1
				(4)
				10

		Question 7 Notes
7. (a)	Note	Condone "Turn" for the 1st B1 mark.
	Note	Penalise the first B1 mark for candidates giving a combination of transformations.
(c)	Note	Allow 1 st M1 for eg. "their matrix \mathbf{R} " $\begin{pmatrix} 1 \\ k \end{pmatrix} = \begin{pmatrix} 1 \\ k \end{pmatrix}$ or "their matrix \mathbf{R} " $\begin{pmatrix} k \\ k^2 \end{pmatrix} = \begin{pmatrix} k \\ k^2 \end{pmatrix}$
		or "their matrix \mathbf{R} " $\begin{pmatrix} \frac{1}{k} \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{k} \\ 1 \end{pmatrix}$ or equivalent
	Note	$y = (\tan \theta)x : \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix} = \begin{pmatrix} -\frac{12}{13} & \frac{5}{13} \\ \frac{5}{13} & \frac{12}{13} \end{pmatrix}$

8. (a)	$f(z) = z^4 + 6z^3 + 76z^2 + az + b$ a. b at				
(a)	$z = z^4 + 6z^3 + 76z^2 + az + b$, a, b are real constants. $z_1 = -3 + 8i$ is given.				
	-3-8i		-3-8i	B1	
(b)	or any v		empt to expand $(z-(-3+8i))(z-(-3-8i))$ valid method to establish a quadratic factor $-3\pm 8i \Rightarrow z+3=\pm 8i \Rightarrow z^2+6z+9=-64$ or sum of roots -6 , product of roots 73 to give $z^2 \pm (\text{sum})z + \text{product}$	M1	(1)
			$\frac{z^2 + 6z + 73}{\text{Attempts to find the other quadratic factor.}}$	AI	
	$f(z) = (z^2 + 6z + 73)(z^2 + 3)$	e	g. using long division to get as far as $z^2 +$ or eg. $f(z) = (z^2 + 6z + 73)(z^2 +)$	M1	
			z^2+3	A1	
	$\left\{z^2 + 3 = 0 \Rightarrow z = \right\} \pm \sqrt{3}i$	Corre	dependent on only the previous M mark ct method of solving the 2 nd quadratic factor	dM1	
	,		$\sqrt{3}i$ and $-\sqrt{3}i$	A1	
(c)			Criteria		(6)
	8		 -3±8i plotted correctly in quadrants 2 and 3 with some evidence of symmetry Their other two <i>complex roots</i> (which are found from solving their 2nd quadratic in (b)) are plotted correctly with some evidence of symmetry about the <i>x</i>-axis 		
	-3 Re		Satisfies at least one of the two criteria	B1 ft	
	$-\sqrt{3}$		Satisfies both criteria with some indication of scale or coordinates stated. All points (arrows) must be in the correct positions relative to each other.	B1 ft	
					(2)
			4ion 9 Notes		9
Q (L)	Question 8 Notes Note Give 3 rd M1 for $z^2 + k = 0$, $k > 0 \Rightarrow$ at least one of either $z = \sqrt{k}$ i or $z = -\sqrt{k}$				
8. (b)	Note Give 3 rd M1 for $z^2 + k = 0$, Note Give 3 rd M0 for $z^2 + k = 0$,			1	
			·		
	Note Give 3 rd M0 for $z^2 + k = 0$, $k > 0 \Rightarrow z = \pm k$ or $z = \pm \sqrt{k}$ Note Candidates do not need to find $a = 18$, $b = 219$				

Question Number	Scheme		Notes	Marks
9.	$2x^2 + 4$	4x-3	= 0 has roots α , β	
(a)	$\alpha + \beta = -\frac{4}{2} \text{ or } -2, \ \alpha\beta = -\frac{3}{2}$		Both $\alpha + \beta = -\frac{4}{2}$ and $\alpha\beta = -\frac{3}{2}$. This may be seen or implied anywhere in this question.	B1
(i)	$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \dots$		Use of a correct identity for $\alpha^2 + \beta^2$ (May be implied by their work)	M1
	$= (-2)^2 - 2\left(-\frac{3}{2}\right) = 7$		7 from correct working	A1 cso
(ii)	$\alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta) = \dots$		Use of an appropriate and correct	
	or $= (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta) = \dots$		identity for $\alpha^3 + \beta^3$ (May be implied by their work)	M1
	$= (-2)^3 - 3(-\frac{3}{2})(-2) = -17$ or $= (-2)(7\frac{3}{2}) = -17$		-17 from correct working	A1 cso
				(5)
(b)	Sum = $\alpha^2 + \beta + \beta^2 + \alpha$ = $\alpha^2 + \beta^2 + \alpha + \beta$ = $7 + (-2) = 5$		Uses at least one of their $\alpha^2 + \beta^2$ or $\alpha + \beta$ in an attempt to find a numerical value for the sum of $(\alpha^2 + \beta)$ and $(\beta^2 + \alpha)$	M1
	Product = $(\alpha^2 + \beta)(\beta^2 + \alpha)$]	Expands $(\alpha^2 + \beta)(\beta^2 + \alpha)$ and uses at least one of	
	$= (\alpha\beta)^2 + \alpha^3 + \beta^3 + \alpha\beta$	thei	r $\alpha\beta$ or $\alpha^3 + \beta^3$ in an attempt to find a numerical	M1
	$= \left(-\frac{3}{2}\right)^2 - 17 - \frac{3}{2} = -\frac{65}{4}$		value for the product of $(\alpha^2 + \beta)$ and $(\beta^2 + \alpha)$	
	$x^2 - 5x - \frac{65}{4} = 0$		Applies $x^2 - (\text{sum})x + \text{product (Can be implied)}$ ("= 0" not required)	M1
	$4x^2 - 20x - 65 = 0$		Any integer multiple of $4x^2 - 20x - 65 = 0$, including the "= 0"	A1
				(4)
			$\alpha^2 + \beta$ and $\beta^2 + \alpha$ explicitly	
(b)	Eg. Let $\alpha = \frac{-4 + \sqrt{40}}{4}$, $\beta = \frac{-4 + \sqrt{40}}{4}$	40 an	d so $\alpha^2 + \beta = \frac{5 - 3\sqrt{10}}{2}$, $\beta^2 + \alpha = \frac{5 + 3\sqrt{10}}{2}$	
	$\left \left(x - \left(\frac{5 - 3\sqrt{10}}{2} \right) \right) \left(x - \left(\frac{5 + 3\sqrt{10}}{2} \right) \right) \right $		Uses $(x - (\alpha^2 + \beta))(x - (\beta^2 + \alpha))$	M1
	7,(7,		with exact numerical values. (May expand first) Attempts to expand	
	$= x^{2} - \left(\frac{5 + 3\sqrt{10}}{2}\right)x - \left(\frac{5 - 3\sqrt{10}}{2}\right)x$	$+\left(\frac{5}{2}\right)$		M1
			$\beta^2 + \alpha$	
	$\Rightarrow x^2 - 5x - \frac{65}{4} = 0$		Collect terms to give a 3TQ. $("=0")$ not required	M1
	$4x^2 - 20x - 65 = 0$		Any integer multiple of $4x^2 - 20x - 65 = 0$, including the "= 0"	A1
				(4)
				9

	Question 9 Notes			
9. (a)	1 st A1	$\alpha + \beta = 2$, $\alpha\beta = -\frac{3}{2} \Rightarrow \alpha^2 + \beta^2 = 4 - 2(-\frac{3}{2}) = 7$ is M1A0 cso		
(a)	Note	Finding $\alpha + \beta = -2$, $\alpha\beta = -\frac{3}{2}$ by writing down or applying $\frac{-4 + \sqrt{40}}{4}$, $\frac{-4 + \sqrt{40}}{4}$ but then		
		writing $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 + 3 = 7$ and $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta) = -8 - 9 = -17$		
		scores B0M1A0M1A0 in part (a).		
	Note	Applying $\frac{-4 + \sqrt{40}}{4}$, $\frac{-4 + \sqrt{40}}{4}$ explicitly in part (a) will score B0M0A0M0A0 Eg: Give no credit for $\left(\frac{-4 + \sqrt{40}}{4}\right)^2 + \left(\frac{-4 + \sqrt{40}}{4}\right)^2 = 7$		
		or for $\left(\frac{-4+\sqrt{40}}{4}\right)^3 + \left(\frac{-4+\sqrt{40}}{4}\right)^3 = -17$		
(b) Note Candidates are allowed to apply $\frac{-4 + \sqrt{40}}{4}$, $\frac{-4 + \sqrt{40}}{4}$		Candidates are allowed to apply $\frac{-4 + \sqrt{40}}{4}$, $\frac{-4 + \sqrt{40}}{4}$ explicitly in part (b).		
	Note	A correct method leading to a candidate stating $a = 4$, $b = -20$, $c = -65$ without writing a		
		final answer of $4x^2 - 20x - 65 = 0$ is final M1A0		

Question Number	Scheme	Notes	Marks		
10.	$u_1 = 5, \ u_{n+1} = 3u_n + 2, \ n \ge 1.$ Required to prove the result, $u_n = 2 \times (3)^n - 1, \ n \in \square^+$				
(i)	$n=1$: $u_1 = 2(3) - 1 = 5$ $u_1 = 6 - 1 = 5$				
	(Assume the result is true for $n = k$)				
	$u_{k+1} = 3(2(3)^k - 1) + 2$	Substitutes $u_k = 2(3)^k - 1$ into $u_{k+1} = 3u_k + 2$	M1		
	$=2(3)^{k+1}-1$	dependent on the previous M mark Expresses u_{k+1} in term of 3^{k+1}	dM1		
		$u_{k+1} = 2(3)^{k+1} - 1$ by correct solution only	A1		
	If the result is true for $n = k$, then it is true for $n = k + 1$. As the result has been shown to be				
	true for $n = 1$, then the result is true for all n				
	Required to prove the result $\sum_{r=1}^{n} \frac{4r}{3^r} = 3 - \frac{(3+2n)}{3^n}$, $n \in \square^+$				
(ii)	$n = 1$: LHS = $\frac{4}{3}$, RHS = $3 - \frac{5}{3} = \frac{4}{3}$	Shows or states both LHS = $\frac{4}{3}$ and RHS = $\frac{4}{3}$ or states LHS = RHS = $\frac{4}{3}$	B1		
	(Assume the result is true for $n = k$)				
	$\sum_{r=1}^{k+1} \frac{4r}{3^r} = 3 - \frac{(3+2k)}{3^k} + \frac{4(k+1)}{3^{k+1}}$	Adds the $(k+1)^{th}$ term to the sum of k terms	M1		
		dependent on the previous M mark	dM1		
	3(3+2k) A(k+1)	Makes 3^{k+1} or $(3)3^k$			
	$=3-\frac{3(3+2k)}{3^{k+1}}+\frac{4(k+1)}{3^{k+1}}$	a common denominator for their fractions.			
	3 3	Correct expression with common denominator 3^{k+1} or $(3)3^k$ for their fractions.	A1		
	$= 3 - \left(\frac{3(3+2k) - 4(k+1)}{3^{k+1}}\right) = 3 - \left(\frac{5+2k}{3^{k+1}}\right)$				
	$= 3 - \frac{(3+2(k+1))}{3^{k+1}}$ 3 - $\frac{(3+2(k+1))}{3^{k+1}}$ by correct solution only				
	If the result is <u>true for $n = k$</u> , then it is <u>true for $n = k + 1$</u> . As the result has been shown to be true for $n = 1$, then the result <u>is true for all n</u>				
			6		
			11		
40. 2	Question 10 Notes				
(i) & (ii)	Note Final A1 for parts (i) and (ii) is dependent on all previous marks being scored in the				
	It is gained by candidates conveying the ideas of all four underlined points				
(i)	either at the end of their solution or as a narrative in their solution. Note $u = 5$ by itself is not sufficient for the 1 st R1 mark in part (i)				
(i)	Note $u_1 = 5$ by itself is not sufficient for the 1 st B1 mark in part (i).				
,	Note $u_1 = 3+2$ without stating $u_1 = 2(3) - 1 = 5$ or $u_1 = 6-1 = 5$ is B0 Note LHS = RHS by itself is not sufficient for the 1 st B1 mark in part (ii).				
(ii)	Note LHS = RHS by itself is not suffice	cient for the 1" B1 mark in part (ii).			